12n
0139
(K12n
0139
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 3 11 6 12 8 5 9
Solving Sequence
8,10
11
3,7
6 5 12 2 1 4 9
c
10
c
7
c
6
c
5
c
11
c
2
c
1
c
4
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1444693149u
23
2063776507u
22
+ ··· + 9741443072b + 4111548169,
7418361699u
23
17994094933u
22
+ ··· + 19482886144a + 41117831143,
u
24
2u
23
+ ··· + 4u + 1i
I
u
2
= h8.06000 × 10
26
u
27
+ 4.92381 × 10
27
u
26
+ ··· + 6.21532 × 10
28
b + 1.24378 × 10
29
,
1.07145 × 10
29
u
27
9.17959 × 10
29
u
26
+ ··· + 6.02886 × 10
30
a 5.28882 × 10
31
,
u
28
+ 6u
27
+ ··· + 542u + 97i
I
u
3
= h−u
3
u
2
+ 2b 2u + 1, u
3
+ 3u
2
+ 4a + 2u + 1, u
4
+ u
2
u + 1i
I
u
4
= h−u
5
u
3
u
2
+ b u 1, u
4
u
2
+ a u, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
I
u
5
= h−91a
2
u 12a
2
+ 564au + 337b 570a + 147u 188, a
3
7a
2
u 5a
2
4au a + u 2, u
2
+ 1i
I
u
6
= h3b + 4a + 2, 4a
2
2a 11, u 1i
* 6 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.44 × 10
9
u
23
2.06 × 10
9
u
22
+ · · · + 9.74 × 10
9
b + 4.11 × 10
9
, 7.42 ×
10
9
u
23
1.80×10
10
u
22
+· · ·+1.95×10
10
a+4.11×10
10
, u
24
2u
23
+· · ·+4u+1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
0.380763u
23
+ 0.923585u
22
+ ··· + 30.4809u 2.11046
0.148304u
23
+ 0.211855u
22
+ ··· 1.81073u 0.422068
a
7
=
u
u
3
+ u
a
6
=
0.0171864u
23
+ 0.103403u
22
+ ··· + 13.2528u 2.04858
0.192725u
23
+ 0.324632u
22
+ ··· + 2.24962u + 0.0941446
a
5
=
0.175538u
23
+ 0.428035u
22
+ ··· + 15.5024u 1.95444
0.192725u
23
+ 0.324632u
22
+ ··· + 2.24962u + 0.0941446
a
12
=
0.000122070u
23
+ 0.000366211u
22
+ ··· 3.00037u + 1.99988
u
a
2
=
0.343412u
23
+ 0.752066u
22
+ ··· + 21.0006u 1.27837
0.0361944u
23
0.0124158u
22
+ ··· 3.46335u 0.593642
a
1
=
0.000244141u
23
0.000732422u
22
+ ··· + 4.00073u 1.99976
u
3
+ u
a
4
=
0.421620u
23
+ 0.978405u
22
+ ··· + 30.4126u 2.01569
0.0958427u
23
+ 0.0837108u
22
+ ··· 1.89080u 0.543727
a
9
=
0.000122070u
23
+ 0.000366211u
22
+ ··· 2.00037u + 0.999878
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
53447126663
77931544576
u
23
86145029121
77931544576
u
22
+ ··· +
1245910362157
77931544576
u
821525338933
77931544576
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 26u
23
+ ··· 7007u + 256
c
2
, c
4
u
24
6u
23
+ ··· + u + 16
c
3
, c
6
u
24
+ 2u
23
+ ··· 96u + 256
c
5
u
24
+ 6u
23
+ ··· + 624u + 64
c
7
, c
9
, c
10
c
12
u
24
2u
23
+ ··· + 4u + 1
c
8
, c
11
4(4u
24
10u
23
+ ··· + 56u + 8)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
50y
23
+ ··· 51129153y + 65536
c
2
, c
4
y
24
26y
23
+ ··· + 7007y + 256
c
3
, c
6
y
24
18y
23
+ ··· 185344y + 65536
c
5
y
24
+ 4y
23
+ ··· 69376y + 4096
c
7
, c
9
, c
10
c
12
y
24
+ 24y
23
+ ··· 110y + 1
c
8
, c
11
16(16y
24
412y
23
+ ··· 64y + 64)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.08185
a = 2.32289
b = 4.49933
0.548623 54.0530
u = 0.148994 + 0.783883I
a = 0.500058 0.355404I
b = 1.153660 0.222767I
0.55362 + 3.41152I 0.86412 8.64734I
u = 0.148994 0.783883I
a = 0.500058 + 0.355404I
b = 1.153660 + 0.222767I
0.55362 3.41152I 0.86412 + 8.64734I
u = 0.358870 + 1.163880I
a = 0.293497 + 0.216350I
b = 1.49300 0.50044I
0.73599 1.30879I 8.68561 1.94237I
u = 0.358870 1.163880I
a = 0.293497 0.216350I
b = 1.49300 + 0.50044I
0.73599 + 1.30879I 8.68561 + 1.94237I
u = 0.512568 + 1.179470I
a = 0.1243150 + 0.0579838I
b = 0.480003 + 0.040159I
3.85211 7.19847I 3.15942 + 2.00992I
u = 0.512568 1.179470I
a = 0.1243150 0.0579838I
b = 0.480003 0.040159I
3.85211 + 7.19847I 3.15942 2.00992I
u = 0.592376 + 0.366960I
a = 0.643909 + 0.233654I
b = 0.688451 + 0.658630I
1.12915 + 1.02062I 4.27770 4.63248I
u = 0.592376 0.366960I
a = 0.643909 0.233654I
b = 0.688451 0.658630I
1.12915 1.02062I 4.27770 + 4.63248I
u = 0.541907
a = 2.23521
b = 0.103995
7.92944 16.4750
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.05535 + 1.55193I
a = 0.211228 + 1.127990I
b = 0.858668 + 0.189081I
11.34610 0.73612I 10.72969 + 0.24360I
u = 0.05535 1.55193I
a = 0.211228 1.127990I
b = 0.858668 0.189081I
11.34610 + 0.73612I 10.72969 0.24360I
u = 0.31630 + 1.54928I
a = 0.269994 1.060220I
b = 0.207846 0.286463I
19.0579 + 6.6137I 10.93484 2.97293I
u = 0.31630 1.54928I
a = 0.269994 + 1.060220I
b = 0.207846 + 0.286463I
19.0579 6.6137I 10.93484 + 2.97293I
u = 0.36560 + 1.55447I
a = 0.044155 1.334510I
b = 1.73078 0.39028I
11.7462 9.1224I 9.90926 + 4.97595I
u = 0.36560 1.55447I
a = 0.044155 + 1.334510I
b = 1.73078 + 0.39028I
11.7462 + 9.1224I 9.90926 4.97595I
u = 0.21985 + 1.60526I
a = 0.227686 0.153857I
b = 1.58817 0.13159I
14.1758 4.9325I 11.00051 + 2.57629I
u = 0.21985 1.60526I
a = 0.227686 + 0.153857I
b = 1.58817 + 0.13159I
14.1758 + 4.9325I 11.00051 2.57629I
u = 0.280085 + 0.207328I
a = 2.76775 + 0.68817I
b = 1.15139 0.84730I
1.26399 + 0.69429I 5.88235 + 2.63444I
u = 0.280085 0.207328I
a = 2.76775 0.68817I
b = 1.15139 + 0.84730I
1.26399 0.69429I 5.88235 2.63444I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.62229 + 1.54349I
a = 0.33089 + 1.38912I
b = 2.20818 + 0.76804I
19.7035 15.6516I 10.07185 + 6.64115I
u = 0.62229 1.54349I
a = 0.33089 1.38912I
b = 2.20818 0.76804I
19.7035 + 15.6516I 10.07185 6.64115I
u = 1.71472
a = 1.29940
b = 4.00128
8.86122 11.8540
u = 0.0966119
a = 5.95715
b = 0.342701
0.870307 11.9670
7
II. I
u
2
= h8.06 × 10
26
u
27
+ 4.92 × 10
27
u
26
+ · · · + 6.22 × 10
28
b + 1.24 ×
10
29
, 1.07 × 10
29
u
27
9.18 × 10
29
u
26
+ · · · + 6.03 × 10
30
a 5.29 ×
10
31
, u
28
+ 6u
27
+ · · · + 542u + 97i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
0.0177720u
27
+ 0.152261u
26
+ ··· + 51.0589u + 8.77250
0.0129680u
27
0.0792205u
26
+ ··· 10.1162u 2.00116
a
7
=
u
u
3
+ u
a
6
=
0.0199647u
27
+ 0.149393u
26
+ ··· + 34.2789u + 5.74653
0.00250162u
27
0.00246621u
26
+ ··· 4.44438u 0.719728
a
5
=
0.0224663u
27
+ 0.146927u
26
+ ··· + 29.8346u + 5.02680
0.00250162u
27
0.00246621u
26
+ ··· 4.44438u 0.719728
a
12
=
0.153415u
27
+ 0.834186u
26
+ ··· 54.2701u 12.9847
0.0420845u
27
0.221294u
26
+ ··· 19.3117u 4.11126
a
2
=
0.0235732u
27
+ 0.167215u
26
+ ··· + 33.8050u + 6.19640
0.00721990u
27
0.0332133u
26
+ ··· 0.910549u 0.565518
a
1
=
0.0217420u
27
+ 0.116081u
26
+ ··· + 1.22632u + 0.0581123
u
3
+ u
a
4
=
0.0203435u
27
+ 0.162178u
26
+ ··· + 41.7784u + 6.36296
0.000121206u
27
0.0139096u
26
+ ··· 3.57361u 0.126255
a
9
=
0.128091u
27
0.908242u
26
+ ··· 122.754u 18.4433
0.0312135u
27
+ 0.163253u
26
+ ··· + 18.6986u + 3.08220
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0158847u
27
0.109997u
26
+ ··· 3.88785u 3.25341
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
14
+ 20u
13
+ ··· + 25u + 1)
2
c
2
, c
4
(u
14
4u
13
+ ··· u 1)
2
c
3
, c
6
(u
14
+ u
13
+ ··· + 20u + 8)
2
c
5
(u
14
2u
13
+ ··· + 4u 1)
2
c
7
, c
9
, c
10
c
12
u
28
+ 6u
27
+ ··· + 542u + 97
c
8
, c
11
u
28
+ 2u
27
+ ··· 12530u + 4603
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
14
48y
13
+ ··· 153y + 1)
2
c
2
, c
4
(y
14
20y
13
+ ··· 25y + 1)
2
c
3
, c
6
(y
14
21y
13
+ ··· 144y + 64)
2
c
5
(y
14
6y
13
+ ··· 8y + 1)
2
c
7
, c
9
, c
10
c
12
y
28
+ 22y
27
+ ··· + 47288y + 9409
c
8
, c
11
y
28
22y
27
+ ··· + 76721028y + 21187609
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.121798 + 1.022010I
a = 2.24497 1.77780I
b = 0.448883
4.07000 8.52950 + 0.I
u = 0.121798 1.022010I
a = 2.24497 + 1.77780I
b = 0.448883
4.07000 8.52950 + 0.I
u = 0.730722 + 0.738022I
a = 1.55264 0.66750I
b = 1.94409 + 0.00042I
6.39368 1.41191I 9.87318 + 3.81508I
u = 0.730722 0.738022I
a = 1.55264 + 0.66750I
b = 1.94409 0.00042I
6.39368 + 1.41191I 9.87318 3.81508I
u = 0.961372 + 0.440888I
a = 1.47427 + 0.61493I
b = 1.88899 + 0.49296I
5.27322 4.24963I 9.14655 + 5.18533I
u = 0.961372 0.440888I
a = 1.47427 0.61493I
b = 1.88899 0.49296I
5.27322 + 4.24963I 9.14655 5.18533I
u = 0.778733 + 0.476869I
a = 0.560712 + 1.159950I
b = 0.091282 + 0.179107I
12.49530 + 2.45847I 7.50081 0.42962I
u = 0.778733 0.476869I
a = 0.560712 1.159950I
b = 0.091282 0.179107I
12.49530 2.45847I 7.50081 + 0.42962I
u = 0.396592 + 1.073210I
a = 0.365767 0.144675I
b = 0.597039 + 0.103194I
0.91573 + 2.69540I 0.31936 2.88879I
u = 0.396592 1.073210I
a = 0.365767 + 0.144675I
b = 0.597039 0.103194I
0.91573 2.69540I 0.31936 + 2.88879I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.014446 + 1.158610I
a = 1.74504 + 1.57039I
b = 0.620567 0.112346I
3.95002 0.09061I 6.51478 + 0.23122I
u = 0.014446 1.158610I
a = 1.74504 1.57039I
b = 0.620567 + 0.112346I
3.95002 + 0.09061I 6.51478 0.23122I
u = 0.120439 + 0.677633I
a = 0.99346 2.55992I
b = 0.620567 + 0.112346I
3.95002 + 0.09061I 6.51478 0.23122I
u = 0.120439 0.677633I
a = 0.99346 + 2.55992I
b = 0.620567 0.112346I
3.95002 0.09061I 6.51478 + 0.23122I
u = 0.663607 + 0.149430I
a = 0.173852 + 0.543824I
b = 0.597039 + 0.103194I
0.91573 + 2.69540I 0.31936 2.88879I
u = 0.663607 0.149430I
a = 0.173852 0.543824I
b = 0.597039 0.103194I
0.91573 2.69540I 0.31936 + 2.88879I
u = 0.148951 + 1.396910I
a = 0.44526 1.43020I
b = 0.091282 0.179107I
12.49530 2.45847I 7.50081 + 0.42962I
u = 0.148951 1.396910I
a = 0.44526 + 1.43020I
b = 0.091282 + 0.179107I
12.49530 + 2.45847I 7.50081 0.42962I
u = 0.01413 + 1.43483I
a = 1.178910 0.382253I
b = 1.94409 0.00042I
6.39368 + 1.41191I 9.87318 3.81508I
u = 0.01413 1.43483I
a = 1.178910 + 0.382253I
b = 1.94409 + 0.00042I
6.39368 1.41191I 9.87318 + 3.81508I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.47648 + 0.13393I
a = 1.255590 0.017191I
b = 2.70698 0.92539I
14.4866 8.3929I 9.39875 + 4.58852I
u = 1.47648 0.13393I
a = 1.255590 + 0.017191I
b = 2.70698 + 0.92539I
14.4866 + 8.3929I 9.39875 4.58852I
u = 0.23016 + 1.48936I
a = 0.53820 1.43603I
b = 1.88899 0.49296I
5.27322 + 4.24963I 9.14655 5.18533I
u = 0.23016 1.48936I
a = 0.53820 + 1.43603I
b = 1.88899 + 0.49296I
5.27322 4.24963I 9.14655 + 5.18533I
u = 0.64679 + 1.68867I
a = 0.104403 + 1.260500I
b = 2.70698 + 0.92539I
14.4866 + 8.3929I 9.39875 4.58852I
u = 0.64679 1.68867I
a = 0.104403 1.260500I
b = 2.70698 0.92539I
14.4866 8.3929I 9.39875 + 4.58852I
u = 0.80033 + 1.70926I
a = 0.068025 + 0.960101I
b = 3.20267
19.1114 12.24106 + 0.I
u = 0.80033 1.70926I
a = 0.068025 0.960101I
b = 3.20267
19.1114 12.24106 + 0.I
13
III. I
u
3
= h−u
3
u
2
+ 2b 2u + 1, u
3
+ 3u
2
+ 4a + 2u + 1, u
4
+ u
2
u + 1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
1
4
u
3
3
4
u
2
1
2
u
1
4
1
2
u
3
+
1
2
u
2
+ u
1
2
a
7
=
u
u
3
+ u
a
6
=
u
u
3
+ u
a
5
=
u
3
u
3
+ u
a
12
=
u
3
+ u
2
u + 1
u
a
2
=
5
4
u
3
3
4
u
2
1
2
u
1
4
1
2
u
3
+
1
2
u
2
1
2
a
1
=
u
3
u
3
u
a
4
=
1
4
u
3
3
4
u
2
1
2
u
1
4
1
2
u
3
+
1
2
u
2
+ u
1
2
a
9
=
u
3
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
79
16
u
3
85
16
u
2
+
21
8
u
99
16
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
6
u
4
c
4
(u + 1)
4
c
5
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
7
, c
9
u
4
+ u
2
+ u + 1
c
8
, c
11
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
10
, c
12
u
4
+ u
2
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
6
y
4
c
5
y
4
y
3
+ 2y
2
+ 7y + 4
c
7
, c
9
, c
10
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
8
, c
11
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.391417 0.855136I
b = 0.173850 + 1.069070I
0.66484 + 1.39709I 2.54919 3.47689I
u = 0.547424 0.585652I
a = 0.391417 + 0.855136I
b = 0.173850 1.069070I
0.66484 1.39709I 2.54919 + 3.47689I
u = 0.547424 + 1.120870I
a = 0.266417 + 0.460085I
b = 0.576150 + 0.307015I
4.26996 7.64338I 11.9196 + 11.4393I
u = 0.547424 1.120870I
a = 0.266417 0.460085I
b = 0.576150 0.307015I
4.26996 + 7.64338I 11.9196 11.4393I
17
IV.
I
u
4
= h−u
5
u
3
u
2
+bu1, u
4
u
2
+au, u
6
+u
5
+2u
4
+2u
3
+2u
2
+2u+1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
u
4
+ u
2
+ u
u
5
+ u
3
+ u
2
+ u + 1
a
7
=
u
u
3
+ u
a
6
=
u
u
3
+ u
a
5
=
u
3
u
3
+ u
a
12
=
u
4
+ u
2
+ u + 1
u
5
2u
3
u
2
u 1
a
2
=
u
4
u
3
+ u
2
+ u
u
5
+ u
2
+ 1
a
1
=
u
3
u
3
u
a
4
=
u
4
+ u
2
+ u
u
5
+ u
3
+ u
2
+ u + 1
a
9
=
u
3
u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
5
5u
3
2u
2
5u 12
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
6
u
6
c
4
(u + 1)
6
c
5
(u
3
u
2
+ 1)
2
c
7
, c
9
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
8
, c
11
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
10
, c
12
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
(y
3
y
2
+ 2y 1)
2
c
7
, c
9
, c
10
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
8
, c
11
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.684695 + 0.494282I
b = 0.662359 + 0.562280I
1.91067 + 2.82812I 8.69240 3.35914I
u = 0.498832 1.001300I
a = 0.684695 0.494282I
b = 0.662359 0.562280I
1.91067 2.82812I 8.69240 + 3.35914I
u = 0.284920 + 1.115140I
a = 0.50000 + 1.95694I
b = 1.32472
6.04826 9.61520 + 0.I
u = 0.284920 1.115140I
a = 0.50000 1.95694I
b = 1.32472
6.04826 9.61520 + 0.I
u = 0.713912 + 0.305839I
a = 0.315305 0.494282I
b = 0.662359 + 0.562280I
1.91067 + 2.82812I 8.69240 3.35914I
u = 0.713912 0.305839I
a = 0.315305 + 0.494282I
b = 0.662359 0.562280I
1.91067 2.82812I 8.69240 + 3.35914I
21
V.
I
u
5
= h−91a
2
u+564au+· · ·570a188, a
3
7a
2
u5a
2
4aua+u2, u
2
+1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
1
a
3
=
a
0.270030a
2
u 1.67359au + ··· + 1.69139a + 0.557864
a
7
=
u
0
a
6
=
0.0207715a
2
u 0.486647au + ··· + 0.0237389a 0.504451
0.121662a
2
u 0.721068au + ··· + 0.718101a + 0.240356
a
5
=
0.100890a
2
u 1.20772au + ··· + 0.741840a 0.264095
0.121662a
2
u 0.721068au + ··· + 0.718101a + 0.240356
a
12
=
0.136499a
2
u 0.516320au + ··· + 0.415430a + 0.172107
u
a
2
=
0.0207715a
2
u 0.486647au + ··· + 0.0237389a 0.504451
0.121662a
2
u 0.721068au + ··· + 0.718101a + 0.240356
a
1
=
u
0
a
4
=
0.270030a
2
u 1.67359au + ··· + 2.69139a + 0.557864
0.270030a
2
u 1.67359au + ··· + 1.69139a + 0.557864
a
9
=
0.201780a
2
u + 0.415430au + ··· + 0.516320a + 0.528190
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
56
337
a
2
u
200
337
a
2
+
1312
337
au +
1284
337
a +
428
337
u
2684
337
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
u
6
+ 5u
4
+ 10u
2
+ 1
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
9
, c
10
c
12
(u
2
+ 1)
3
c
8
u
6
4u
5
+ 8u
4
+ 28u
3
+ 36u
2
+ 24u + 8
c
11
u
6
+ 4u
5
+ 8u
4
28u
3
+ 36u
2
24u + 8
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
(y
3
+ 5y
2
+ 10y + 1)
2
c
7
, c
9
, c
10
c
12
(y + 1)
6
c
8
, c
11
y
6
+ 360y
4
+ 80y
2
+ 64
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.567321 0.459293I
b = 1.307140 0.215080I
0.26574 + 2.82812I 8.49024 2.97945I
u = 1.000000I
a = 0.163008 + 0.300102I
b = 1.307140 0.215080I
0.26574 2.82812I 8.49024 + 2.97945I
u = 1.000000I
a = 5.40431 + 7.15919I
b = 0.569840I
4.40332 15.0195 + 0.I
u = 1.000000I
a = 0.567321 + 0.459293I
b = 1.307140 + 0.215080I
0.26574 2.82812I 8.49024 + 2.97945I
u = 1.000000I
a = 0.163008 0.300102I
b = 1.307140 + 0.215080I
0.26574 + 2.82812I 8.49024 2.97945I
u = 1.000000I
a = 5.40431 7.15919I
b = 0.569840I
4.40332 15.0195 + 0.I
25
VI. I
u
6
= h3b + 4a + 2, 4a
2
2a 11, u 1i
(i) Arc colorings
a
8
=
0
1
a
10
=
1
0
a
11
=
1
1
a
3
=
a
4
3
a
2
3
a
7
=
1
2
a
6
=
1
3
a +
5
6
0
a
5
=
1
3
a +
5
6
0
a
12
=
1
2
a + 2
1
a
2
=
1
3
a +
7
6
4
3
a
2
3
a
1
=
a + 3
2
a
4
=
1
3
a +
2
3
2
a
9
=
1
2
a 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15
2
a + 7
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
2
3u + 1
c
2
, c
3
u
2
+ u 1
c
4
, c
6
u
2
u 1
c
5
u
2
c
7
, c
9
(u + 1)
2
c
8
4(4u
2
+ 6u + 1)
c
10
, c
12
(u 1)
2
c
11
4(4u
2
6u + 1)
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
2
7y + 1
c
2
, c
3
, c
4
c
6
y
2
3y + 1
c
5
y
2
c
7
, c
9
, c
10
c
12
(y 1)
2
c
8
, c
11
16(16y
2
28y + 1)
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.42705
b = 1.23607
7.23771 3.70290
u = 1.00000
a = 1.92705
b = 3.23607
0.657974 21.4530
29
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
(u
2
3u + 1)(u
3
u
2
+ 2u 1)
2
· ((u
14
+ 20u
13
+ ··· + 25u + 1)
2
)(u
24
+ 26u
23
+ ··· 7007u + 256)
c
2
((u 1)
10
)(u
2
+ u 1)(u
3
+ u
2
1)
2
(u
14
4u
13
+ ··· u 1)
2
· (u
24
6u
23
+ ··· + u + 16)
c
3
u
10
(u
2
+ u 1)(u
3
u
2
+ 2u 1)
2
(u
14
+ u
13
+ ··· + 20u + 8)
2
· (u
24
+ 2u
23
+ ··· 96u + 256)
c
4
((u + 1)
10
)(u
2
u 1)(u
3
u
2
+ 1)
2
(u
14
4u
13
+ ··· u 1)
2
· (u
24
6u
23
+ ··· + u + 16)
c
5
u
2
(u
3
u
2
+ 1)
2
(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)(u
6
+ 5u
4
+ 10u
2
+ 1)
· ((u
14
2u
13
+ ··· + 4u 1)
2
)(u
24
+ 6u
23
+ ··· + 624u + 64)
c
6
u
10
(u
2
u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
14
+ u
13
+ ··· + 20u + 8)
2
· (u
24
+ 2u
23
+ ··· 96u + 256)
c
7
, c
9
((u + 1)
2
)(u
2
+ 1)
3
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ ··· 2u + 1)
· (u
24
2u
23
+ ··· + 4u + 1)(u
28
+ 6u
27
+ ··· + 542u + 97)
c
8
16(4u
2
+ 6u + 1)(u
4
+ 2u
3
+ 3u
2
+ u + 1)
· (u
6
4u
5
+ ··· + 24u + 8)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (4u
24
10u
23
+ ··· + 56u + 8)(u
28
+ 2u
27
+ ··· 12530u + 4603)
c
10
, c
12
((u 1)
2
)(u
2
+ 1)
3
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ ··· + 2u + 1)
· (u
24
2u
23
+ ··· + 4u + 1)(u
28
+ 6u
27
+ ··· + 542u + 97)
c
11
16(4u
2
6u + 1)(u
4
+ 2u
3
+ ··· + u + 1)(u
6
+ 3u
5
+ ··· + 2u
3
+ 1)
· (u
6
+ 4u
5
+ ··· 24u + 8)(4u
24
10u
23
+ ··· + 56u + 8)
· (u
28
+ 2u
27
+ ··· 12530u + 4603)
30
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
(y
2
7y + 1)(y
3
+ 3y
2
+ 2y 1)
2
· (y
14
48y
13
+ ··· 153y + 1)
2
· (y
24
50y
23
+ ··· 51129153y + 65536)
c
2
, c
4
(y 1)
10
(y
2
3y + 1)(y
3
y
2
+ 2y 1)
2
· ((y
14
20y
13
+ ··· 25y + 1)
2
)(y
24
26y
23
+ ··· + 7007y + 256)
c
3
, c
6
y
10
(y
2
3y + 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
14
21y
13
+ ··· 144y + 64)
2
· (y
24
18y
23
+ ··· 185344y + 65536)
c
5
y
2
(y
3
y
2
+ 2y 1)
2
(y
3
+ 5y
2
+ 10y + 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· ((y
14
6y
13
+ ··· 8y + 1)
2
)(y
24
+ 4y
23
+ ··· 69376y + 4096)
c
7
, c
9
, c
10
c
12
((y 1)
2
)(y + 1)
6
(y
4
+ 2y
3
+ ··· + y + 1)(y
6
+ 3y
5
+ ··· + 2y
3
+ 1)
· (y
24
+ 24y
23
+ ··· 110y + 1)(y
28
+ 22y
27
+ ··· + 47288y + 9409)
c
8
, c
11
256(16y
2
28y + 1)(y
4
+ 2y
3
+ ··· + 5y + 1)(y
6
+ 360y
4
+ 80y
2
+ 64)
· (y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)(16y
24
412y
23
+ ··· 64y + 64)
· (y
28
22y
27
+ ··· + 76721028y + 21187609)
31