10
138
(K10n
1
)
A knot diagram
1
Linearized knot diagam
8 4 10 6 8 9 2 5 2 3
Solving Sequence
5,8
6
2,9
10 1 4 3 7
c
5
c
8
c
9
c
1
c
4
c
3
c
7
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
4
+ u
3
u
2
+ b + u, u
4
+ u
3
2u
2
+ a + u 1, u
7
u
6
+ 3u
5
2u
4
+ 3u
3
2u
2
1i
I
u
2
= hu
13
2u
12
+ 6u
11
7u
10
+ 11u
9
13u
8
+ 14u
7
17u
6
+ 10u
5
9u
4
+ 7u
3
3u
2
+ b + 3u,
u
12
+ 2u
11
5u
10
+ 6u
9
9u
8
+ 11u
7
12u
6
+ 13u
5
8u
4
+ 8u
3
5u
2
+ a + 3u 2,
u
14
2u
13
+ 6u
12
8u
11
+ 13u
10
16u
9
+ 18u
8
21u
7
+ 16u
6
15u
5
+ 10u
4
6u
3
+ 5u
2
u + 1i
I
u
3
= hb + u, a, u
2
+ u + 1i
I
u
4
= hb + 1, a, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
4
+ u
3
u
2
+ b + u, u
4
+ u
3
2u
2
+ a + u 1, u
7
u
6
+ 3u
5
2u
4
+ 3u
3
2u
2
1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
6
=
1
u
2
a
2
=
u
4
u
3
+ 2u
2
u + 1
u
4
u
3
+ u
2
u
a
9
=
u
u
a
10
=
u
2
1
u
5
+ 2u
3
u
2
+ u 1
a
1
=
u
4
u
3
+ 2u
2
u + 1
u
6
+ u
5
u
4
u
a
4
=
u
2
+ 1
u
4
a
3
=
u
3
+ u
2
u + 1
u
6
+ u
4
u
3
+ u
2
u
a
7
=
u
4
+ u
2
+ 1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 6u
5
10u
4
+ 10u
3
8u
2
+ 8u 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
7
+ 5u
6
+ 10u
5
+ 13u
4
+ 18u
3
+ 20u
2
+ 12u + 4
c
2
, c
4
u
7
+ 5u
6
+ 11u
5
+ 10u
4
u
3
8u
2
4u 1
c
3
, c
5
, c
8
c
10
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ 1
c
6
, c
9
u
7
u
6
5u
5
+ 2u
4
+ 7u
3
+ 4u
2
+ 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
7
5y
6
+ 6y
5
+ 15y
4
+ 4y
3
72y
2
16y 16
c
2
, c
4
y
7
3y
6
+ 19y
5
50y
4
+ 83y
3
36y
2
1
c
3
, c
5
, c
8
c
10
y
7
+ 5y
6
+ 11y
5
+ 10y
4
y
3
8y
2
4y 1
c
6
, c
9
y
7
11y
6
+ 43y
5
62y
4
+ 15y
3
+ 8y
2
4y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.903382
a = 1.65758
b = 0.158515
3.61413 1.15360
u = 0.237163 + 1.166790I
a = 0.931299 + 0.562572I
b = 0.626141 + 1.116010I
4.21141 3.35522I 7.88053 + 3.75965I
u = 0.237163 1.166790I
a = 0.931299 0.562572I
b = 0.626141 1.116010I
4.21141 + 3.35522I 7.88053 3.75965I
u = 0.266839 + 0.572668I
a = 0.482335 0.961495I
b = 0.260920 0.655876I
0.184850 1.357360I 2.08591 + 4.58406I
u = 0.266839 0.572668I
a = 0.482335 + 0.961495I
b = 0.260920 + 0.655876I
0.184850 + 1.357360I 2.08591 4.58406I
u = 0.552311 + 1.284990I
a = 0.120172 1.321830I
b = 0.46632 2.74126I
11.0685 + 10.4672I 6.45679 5.97165I
u = 0.552311 1.284990I
a = 0.120172 + 1.321830I
b = 0.46632 + 2.74126I
11.0685 10.4672I 6.45679 + 5.97165I
5
II.
I
u
2
= hu
13
2u
12
+· · ·+b+3u, u
12
+2u
11
+· · ·+a2, u
14
2u
13
+· · ·u+1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
6
=
1
u
2
a
2
=
u
12
2u
11
+ ··· 3u + 2
u
13
+ 2u
12
+ ··· + 3u
2
3u
a
9
=
u
u
a
10
=
u
2
1
u
13
u
12
+ ··· + u
2
+ 3u
a
1
=
u
12
2u
11
+ ··· 3u + 2
u
13
+ 3u
12
+ ··· 4u + 1
a
4
=
u
2
+ 1
u
4
a
3
=
u
12
u
11
+ ··· 2u + 2
3u
13
+ 6u
12
+ ··· 5u + 1
a
7
=
u
4
+ u
2
+ 1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 5u
13
8u
12
+25u
11
27u
10
+45u
9
53u
8
+56u
7
68u
6
+41u
5
40u
4
+30u
3
14u
2
+15u5
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
7
2u
6
3u
5
+ 8u
4
2u
3
2u
2
u + 2)
2
c
2
, c
4
u
14
+ 8u
13
+ ··· + 9u + 1
c
3
, c
5
, c
8
c
10
u
14
+ 2u
13
+ ··· + u + 1
c
6
, c
9
u
14
2u
13
+ ··· 5u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
7
10y
6
+ 37y
5
62y
4
+ 50y
3
32y
2
+ 9y 4)
2
c
2
, c
4
y
14
4y
13
+ ··· 15y + 1
c
3
, c
5
, c
8
c
10
y
14
+ 8y
13
+ ··· + 9y + 1
c
6
, c
9
y
14
16y
13
+ ··· + 9y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.991355 + 0.114136I
a = 1.71230 0.09769I
b = 0.026394 0.197164I
7.46645 4.93043I 4.23989 + 2.98386I
u = 0.991355 0.114136I
a = 1.71230 + 0.09769I
b = 0.026394 + 0.197164I
7.46645 + 4.93043I 4.23989 2.98386I
u = 0.185175 + 0.946853I
a = 0.600533 + 0.684269I
b = 0.46039 + 1.77594I
1.11654 + 3.28492I 6.60141 2.44171I
u = 0.185175 0.946853I
a = 0.600533 0.684269I
b = 0.46039 1.77594I
1.11654 3.28492I 6.60141 + 2.44171I
u = 0.625804 + 0.953838I
a = 0.688899 + 0.343864I
b = 0.684697 + 0.025265I
1.11654 3.28492I 6.60141 + 2.44171I
u = 0.625804 0.953838I
a = 0.688899 0.343864I
b = 0.684697 0.025265I
1.11654 + 3.28492I 6.60141 2.44171I
u = 0.457566 + 0.656399I
a = 0.143355 0.834966I
b = 0.251357 0.560891I
0.165382 1.372840I 2.77344 + 4.48022I
u = 0.457566 0.656399I
a = 0.143355 + 0.834966I
b = 0.251357 + 0.560891I
0.165382 + 1.372840I 2.77344 4.48022I
u = 0.480471 + 1.270420I
a = 0.237920 + 1.237410I
b = 0.43046 + 2.68133I
7.46645 + 4.93043I 4.23989 2.98386I
u = 0.480471 1.270420I
a = 0.237920 1.237410I
b = 0.43046 2.68133I
7.46645 4.93043I 4.23989 + 2.98386I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.010735 + 0.596013I
a = 0.813209 0.794860I
b = 0.506054 0.754738I
0.165382 1.372840I 2.77344 + 4.48022I
u = 0.010735 0.596013I
a = 0.813209 + 0.794860I
b = 0.506054 + 0.754738I
0.165382 + 1.372840I 2.77344 4.48022I
u = 0.415634 + 1.342520I
a = 0.405289 1.309100I
b = 0.51639 2.58562I
12.1121 7.77053 + 0.I
u = 0.415634 1.342520I
a = 0.405289 + 1.309100I
b = 0.51639 + 2.58562I
12.1121 7.77053 + 0.I
10
III. I
u
3
= hb + u, a, u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
6
=
1
u + 1
a
2
=
0
u
a
9
=
u
u
a
10
=
u
u + 1
a
1
=
0
u
a
4
=
u
u
a
3
=
1
u + 1
a
7
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
2
c
2
, c
3
, c
4
c
6
, c
8
, c
9
u
2
u + 1
c
5
, c
10
u
2
+ u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
9
, c
10
y
2
+ y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
14
IV. I
u
4
= hb + 1, a, u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
6
=
1
u + 1
a
2
=
0
1
a
9
=
u
u
a
10
=
u
2u
a
1
=
0
1
a
4
=
u
u
a
3
=
u 1
u 2
a
7
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
2
c
2
, c
3
, c
4
c
6
, c
8
, c
9
u
2
u + 1
c
5
, c
10
u
2
+ u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
9
, c
10
y
2
+ y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 1.00000
0 3.00000
u = 0.500000 0.866025I
a = 0
b = 1.00000
0 3.00000
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
4
(u
7
2u
6
3u
5
+ 8u
4
2u
3
2u
2
u + 2)
2
· (u
7
+ 5u
6
+ 10u
5
+ 13u
4
+ 18u
3
+ 20u
2
+ 12u + 4)
c
2
, c
4
(u
2
u + 1)
2
(u
7
+ 5u
6
+ 11u
5
+ 10u
4
u
3
8u
2
4u 1)
· (u
14
+ 8u
13
+ ··· + 9u + 1)
c
3
, c
8
(u
2
u + 1)
2
(u
7
+ u
6
+ 3u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ 1)
· (u
14
+ 2u
13
+ ··· + u + 1)
c
5
, c
10
(u
2
+ u + 1)
2
(u
7
+ u
6
+ 3u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ 1)
· (u
14
+ 2u
13
+ ··· + u + 1)
c
6
, c
9
(u
2
u + 1)
2
(u
7
u
6
5u
5
+ 2u
4
+ 7u
3
+ 4u
2
+ 2u + 1)
· (u
14
2u
13
+ ··· 5u + 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
4
(y
7
10y
6
+ 37y
5
62y
4
+ 50y
3
32y
2
+ 9y 4)
2
· (y
7
5y
6
+ 6y
5
+ 15y
4
+ 4y
3
72y
2
16y 16)
c
2
, c
4
(y
2
+ y + 1)
2
(y
7
3y
6
+ 19y
5
50y
4
+ 83y
3
36y
2
1)
· (y
14
4y
13
+ ··· 15y + 1)
c
3
, c
5
, c
8
c
10
(y
2
+ y + 1)
2
(y
7
+ 5y
6
+ 11y
5
+ 10y
4
y
3
8y
2
4y 1)
· (y
14
+ 8y
13
+ ··· + 9y + 1)
c
6
, c
9
(y
2
+ y + 1)
2
(y
7
11y
6
+ 43y
5
62y
4
+ 15y
3
+ 8y
2
4y 1)
· (y
14
16y
13
+ ··· + 9y + 1)
20