12n
0141
(K12n
0141
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 10 4 11 6 12 8 5 9
Solving Sequence
7,11 4,8
6 3 10 5 12 2 1 9
c
7
c
6
c
3
c
10
c
5
c
11
c
2
c
1
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−6686875043u
25
624104415u
24
+ ··· + 13435529728b + 3806288503,
79755561391u
25
+ 46013804251u
24
+ ··· + 214968475648a 231933695795,
u
26
+ 2u
24
+ ··· u + 1i
I
u
2
= h−6.09745 × 10
15
u
23
+ 2.23561 × 10
15
u
22
+ ··· + 4.70830 × 10
16
b 9.49470 × 10
16
,
3.77245 × 10
16
u
23
4.36637 × 10
15
u
22
+ ··· + 1.14344 × 10
17
a + 1.28843 × 10
18
, u
24
2u
23
+ ··· + 20u + 17i
I
u
3
= hb, u
3
u
2
+ 4a + 2u 3, u
4
+ u
2
+ u + 1i
I
u
4
= h13362a
5
u 25075a
4
u + ··· + 39143a + 74777,
a
6
5a
5
u 5a
5
+ 14a
4
u + 2a
3
u + 9a
3
14a
2
u + 10a
2
5au 13a + 3u, u
2
+ 1i
I
u
5
= hb, u
3
+ a u + 1, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
* 5 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−6.69 × 10
9
u
25
6.24 × 10
8
u
24
+ · · · + 1.34 × 10
10
b + 3.81 × 10
9
, 7.98 ×
10
10
u
25
+4.60×10
10
u
24
+· · ·+2.15×10
11
a2.32×10
11
, u
26
+2u
24
+· · ·u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
0.371010u
25
0.214049u
24
+ ··· 2.37389u + 1.07892
0.497701u
25
+ 0.0464518u
24
+ ··· 0.303652u 0.283300
a
8
=
1
u
2
a
6
=
0.786727u
25
+ 0.355240u
24
+ ··· + 0.268947u + 0.181402
0.281655u
25
+ 0.162782u
24
+ ··· 0.150036u + 1.19156
a
3
=
0.0563150u
25
0.379621u
24
+ ··· 1.27287u 1.11514
0.478616u
25
0.0163741u
24
+ ··· + 1.75358u 0.0264586
a
10
=
u
u
3
+ u
a
5
=
0.836319u
25
+ 0.321913u
24
+ ··· + 0.240330u 0.254796
0.290547u
25
+ 0.204134u
24
+ ··· 0.0385003u + 1.59443
a
12
=
0.00390625u
25
0.00390625u
24
+ ··· 2u 0.996094
0.00781250u
25
+ 0.00781250u
24
+ ··· + 2u 0.00781250
a
2
=
0.977915u
25
0.402299u
24
+ ··· 2.88010u + 0.873808
0.278382u
25
0.0788085u
24
+ ··· 1.17498u 1.03877
a
1
=
0.00781250u
25
+ 0.00781250u
24
+ ··· + 2u + 0.992188
1
64
u
25
1
64
u
24
+ ··· 2u +
1
64
a
9
=
0.00390625u
25
0.00390625u
24
+ ··· 2u + 0.00390625
1
128
u
25
+
1
128
u
24
+ ··· + u
1
128
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2427750693445
859873902592
u
25
360782953559
859873902592
u
24
+ ··· +
1801599863713
214968475648
u
3455303354737
859873902592
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 7u
25
+ ··· + 801u + 256
c
2
, c
4
u
26
5u
25
+ ··· 97u + 16
c
3
, c
6
u
26
+ 3u
25
+ ··· 288u + 256
c
5
u
26
+ 6u
25
+ ··· + 12u + 4
c
7
, c
9
, c
10
c
12
u
26
+ 2u
24
+ ··· + u + 1
c
8
, c
11
u
26
4u
25
+ ··· + 64u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
+ 29y
25
+ ··· 2714689y + 65536
c
2
, c
4
y
26
7y
25
+ ··· 801y + 256
c
3
, c
6
y
26
27y
25
+ ··· 709632y + 65536
c
5
y
26
4y
25
+ ··· + 8y + 16
c
7
, c
9
, c
10
c
12
y
26
+ 4y
25
+ ··· + 11y + 1
c
8
, c
11
y
26
+ 40y
25
+ ··· + 114688y + 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.667716 + 0.516448I
a = 0.351921 0.458400I
b = 1.12559 + 1.18769I
2.22323 + 3.06268I 3.92422 7.01336I
u = 0.667716 0.516448I
a = 0.351921 + 0.458400I
b = 1.12559 1.18769I
2.22323 3.06268I 3.92422 + 7.01336I
u = 0.801593 + 0.232094I
a = 1.51203 + 1.55558I
b = 0.422167 + 0.399037I
0.278324 0.685873I 9.0494 11.0486I
u = 0.801593 0.232094I
a = 1.51203 1.55558I
b = 0.422167 0.399037I
0.278324 + 0.685873I 9.0494 + 11.0486I
u = 0.469402 + 1.100720I
a = 0.043572 0.410845I
b = 0.655893 0.316475I
4.13271 + 8.27529I 1.38622 13.75239I
u = 0.469402 1.100720I
a = 0.043572 + 0.410845I
b = 0.655893 + 0.316475I
4.13271 8.27529I 1.38622 + 13.75239I
u = 0.923141 + 0.764696I
a = 0.958376 + 0.099240I
b = 0.77338 + 1.80053I
1.82654 + 6.11440I 0.00845 7.81451I
u = 0.923141 0.764696I
a = 0.958376 0.099240I
b = 0.77338 1.80053I
1.82654 6.11440I 0.00845 + 7.81451I
u = 1.080690 + 0.597719I
a = 0.810296 + 0.338780I
b = 0.479644 + 0.933985I
2.44292 1.70853I 2.53010 0.44010I
u = 1.080690 0.597719I
a = 0.810296 0.338780I
b = 0.479644 0.933985I
2.44292 + 1.70853I 2.53010 + 0.44010I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.357275 + 0.656602I
a = 0.625898 0.297698I
b = 0.617127 0.011460I
0.43304 1.45422I 6.37162 + 4.53869I
u = 0.357275 0.656602I
a = 0.625898 + 0.297698I
b = 0.617127 + 0.011460I
0.43304 + 1.45422I 6.37162 4.53869I
u = 0.064603 + 0.724531I
a = 0.732028 + 0.504908I
b = 0.988101 + 0.632950I
2.19370 5.44910I 2.44328 + 3.74912I
u = 0.064603 0.724531I
a = 0.732028 0.504908I
b = 0.988101 0.632950I
2.19370 + 5.44910I 2.44328 3.74912I
u = 0.122998 + 0.488840I
a = 0.938808 0.475125I
b = 0.643196 0.415198I
0.295014 1.313020I 3.29344 + 4.27536I
u = 0.122998 0.488840I
a = 0.938808 + 0.475125I
b = 0.643196 + 0.415198I
0.295014 + 1.313020I 3.29344 4.27536I
u = 0.308360 + 0.340398I
a = 2.08611 1.44710I
b = 0.946580 0.566353I
2.70538 0.26841I 4.73409 2.48832I
u = 0.308360 0.340398I
a = 2.08611 + 1.44710I
b = 0.946580 + 0.566353I
2.70538 + 0.26841I 4.73409 + 2.48832I
u = 0.89844 + 1.25514I
a = 0.795341 1.127880I
b = 1.75386 0.65984I
9.35192 8.60133I 0.45347 + 4.28581I
u = 0.89844 1.25514I
a = 0.795341 + 1.127880I
b = 1.75386 + 0.65984I
9.35192 + 8.60133I 0.45347 4.28581I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.07814 + 1.14400I
a = 0.949321 + 0.843430I
b = 2.35374 + 0.29535I
10.68100 + 7.33921I 0.71166 4.65613I
u = 1.07814 1.14400I
a = 0.949321 0.843430I
b = 2.35374 0.29535I
10.68100 7.33921I 0.71166 + 4.65613I
u = 0.91358 + 1.30265I
a = 1.01202 1.05301I
b = 1.86071 0.87913I
8.8427 + 15.8962I 1.12202 7.88761I
u = 0.91358 1.30265I
a = 1.01202 + 1.05301I
b = 1.86071 + 0.87913I
8.8427 15.8962I 1.12202 + 7.88761I
u = 1.16396 + 1.16780I
a = 0.790615 + 0.787753I
b = 2.00696 + 0.05529I
10.55890 0.78971I 0.743315 0.651860I
u = 1.16396 1.16780I
a = 0.790615 0.787753I
b = 2.00696 0.05529I
10.55890 + 0.78971I 0.743315 + 0.651860I
7
II. I
u
2
= h−6.10 × 10
15
u
23
+ 2.24 × 10
15
u
22
+ · · · + 4.71 × 10
16
b 9.49 ×
10
16
, 3.77 × 10
16
u
23
4.37 × 10
15
u
22
+ · · · + 1.14 × 10
17
a + 1.29 ×
10
18
, u
24
2u
23
+ · · · + 20u + 17i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
0.329920u
23
+ 0.0381861u
22
+ ··· 16.1056u 11.2680
0.129504u
23
0.0474822u
22
+ ··· + 6.03349u + 2.01659
a
8
=
1
u
2
a
6
=
0.134080u
23
+ 0.273604u
22
+ ··· + 18.4960u + 7.55474
0.0652274u
23
+ 0.230684u
22
+ ··· + 2.08553u 0.246283
a
3
=
0.525803u
23
+ 0.373005u
22
+ ··· 21.1910u 9.77304
0.290659u
23
0.568556u
22
+ ··· + 0.961671u + 1.16554
a
10
=
u
u
3
+ u
a
5
=
0.0378807u
23
+ 0.376737u
22
+ ··· + 15.4253u + 5.78825
0.0130146u
23
+ 0.0806472u
22
+ ··· + 1.73550u + 0.00270381
a
12
=
0.381461u
23
+ 0.0579674u
22
+ ··· + 17.8645u + 15.5499
0.233501u
23
+ 0.551364u
22
+ ··· + 3.42307u + 2.97882
a
2
=
0.372396u
23
0.256379u
22
+ ··· 28.9922u 15.0699
0.158126u
23
0.156008u
22
+ ··· + 5.53212u + 2.08728
a
1
=
0.171014u
23
+ 0.00109401u
22
+ ··· 7.41524u 4.78310
0.217158u
23
0.502812u
22
+ ··· 2.31071u 0.0127898
a
9
=
0.561081u
23
+ 1.28719u
22
+ ··· 10.6082u + 5.36892
0.125093u
23
+ 0.0910163u
22
+ ··· + 0.476538u 4.41213
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8343946159698214
47083027591501867
u
23
14877793040005974
47083027591501867
u
22
+···
1332066838354670501
47083027591501867
u
405177085834515952
47083027591501867
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
12
+ 14u
10
+ ··· + 12u + 1)
2
c
2
, c
4
(u
12
4u
11
+ 8u
10
5u
9
5u
8
+ 15u
7
9u
6
+ 8u
4
2u
3
2u
2
+ 4u 1)
2
c
3
, c
6
(u
12
+ u
11
+ ··· + 36u + 8)
2
c
5
(u
12
2u
11
+ u
10
+ 2u
9
+ u
8
6u
7
+ 4u
6
+ 3u
5
6u
3
+ 3u
2
+ u 1)
2
c
7
, c
9
, c
10
c
12
u
24
+ 2u
23
+ ··· 20u + 17
c
8
, c
11
u
24
4u
23
+ ··· + 206508u + 103417
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
12
+ 28y
11
+ ··· 136y + 1)
2
c
2
, c
4
(y
12
+ 14y
10
+ ··· 12y + 1)
2
c
3
, c
6
(y
12
21y
11
+ ··· 464y + 64)
2
c
5
(y
12
2y
11
+ ··· 7y + 1)
2
c
7
, c
9
, c
10
c
12
y
24
+ 6y
23
+ ··· 672y + 289
c
8
, c
11
y
24
+ 10y
23
+ ··· 21593989544y + 10695075889
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.969635 + 0.106868I
a = 1.001160 + 0.317590I
b = 1.109170 + 0.168712I
0.62669 + 4.39533I 1.05572 5.22312I
u = 0.969635 0.106868I
a = 1.001160 0.317590I
b = 1.109170 0.168712I
0.62669 4.39533I 1.05572 + 5.22312I
u = 0.123724 + 1.022700I
a = 5.28074 2.03927I
b = 0.523623
5.52228 4.00782 + 0.I
u = 0.123724 1.022700I
a = 5.28074 + 2.03927I
b = 0.523623
5.52228 4.00782 + 0.I
u = 0.238605 + 1.047760I
a = 0.655906 + 0.223543I
b = 1.121780 0.617797I
0.439990 1.030190I 2.72057 + 1.44119I
u = 0.238605 1.047760I
a = 0.655906 0.223543I
b = 1.121780 + 0.617797I
0.439990 + 1.030190I 2.72057 1.44119I
u = 0.020698 + 1.152910I
a = 1.61672 1.91219I
b = 0.080299 0.791847I
4.16359 1.32529I 2.28742 + 4.78445I
u = 0.020698 1.152910I
a = 1.61672 + 1.91219I
b = 0.080299 + 0.791847I
4.16359 + 1.32529I 2.28742 4.78445I
u = 0.364095 + 1.182240I
a = 0.285055 0.547656I
b = 0.516192
4.70703 2.22072 + 0.I
u = 0.364095 1.182240I
a = 0.285055 + 0.547656I
b = 0.516192
4.70703 2.22072 + 0.I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.117212 + 0.716758I
a = 1.17962 1.95274I
b = 0.080299 + 0.791847I
4.16359 + 1.32529I 2.28742 4.78445I
u = 0.117212 0.716758I
a = 1.17962 + 1.95274I
b = 0.080299 0.791847I
4.16359 1.32529I 2.28742 + 4.78445I
u = 0.42521 + 1.35732I
a = 0.082612 + 0.195129I
b = 1.109170 0.168712I
0.62669 4.39533I 1.05572 + 5.22312I
u = 0.42521 1.35732I
a = 0.082612 0.195129I
b = 1.109170 + 0.168712I
0.62669 + 4.39533I 1.05572 5.22312I
u = 1.26329 + 0.77255I
a = 0.983614 0.427684I
b = 2.18164 + 0.33163I
11.04720 + 0.80453I 1.287091 + 0.160859I
u = 1.26329 0.77255I
a = 0.983614 + 0.427684I
b = 2.18164 0.33163I
11.04720 0.80453I 1.287091 0.160859I
u = 1.14727 + 1.03329I
a = 0.996717 + 0.865474I
b = 2.18164 + 0.33163I
11.04720 + 0.80453I 1.287091 + 0.160859I
u = 1.14727 1.03329I
a = 0.996717 0.865474I
b = 2.18164 0.33163I
11.04720 0.80453I 1.287091 0.160859I
u = 1.34944 + 0.76245I
a = 0.973078 0.515965I
b = 2.09405 + 0.51270I
10.75480 7.79830I 0.83048 + 4.22102I
u = 1.34944 0.76245I
a = 0.973078 + 0.515965I
b = 2.09405 0.51270I
10.75480 + 7.79830I 0.83048 4.22102I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.447244 + 0.047871I
a = 1.70744 1.42312I
b = 1.121780 0.617797I
0.439990 1.030190I 2.72057 + 1.44119I
u = 0.447244 0.047871I
a = 1.70744 + 1.42312I
b = 1.121780 + 0.617797I
0.439990 + 1.030190I 2.72057 1.44119I
u = 1.19493 + 1.10213I
a = 1.042810 + 0.655912I
b = 2.09405 + 0.51270I
10.75480 7.79830I 0.83048 + 4.22102I
u = 1.19493 1.10213I
a = 1.042810 0.655912I
b = 2.09405 0.51270I
10.75480 + 7.79830I 0.83048 4.22102I
13
III. I
u
3
= hb, u
3
u
2
+ 4a + 2u 3, u
4
+ u
2
+ u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
1
4
u
3
+
1
4
u
2
1
2
u +
3
4
0
a
8
=
1
u
2
a
6
=
1
0
a
3
=
1
4
u
3
+
1
4
u
2
1
2
u +
3
4
0
a
10
=
u
u
3
+ u
a
5
=
u
u
3
+ u
2
+ u + 1
a
12
=
u
3
u
2
u 1
a
2
=
1
4
u
3
+
1
4
u
2
+
1
2
u +
3
4
u
3
u
2
u 1
a
1
=
u
u
3
u
2
u 1
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
49
16
u
3
43
16
u
2
+
21
8
u
29
16
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
6
u
4
c
4
(u + 1)
4
c
5
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
7
, c
9
u
4
+ u
2
+ u + 1
c
8
, c
11
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
10
, c
12
u
4
+ u
2
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
6
y
4
c
5
y
4
y
3
+ 2y
2
+ 7y + 4
c
7
, c
9
, c
10
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
8
, c
11
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 1.112690 0.371716I
b = 0
0.66484 1.39709I 1.91043 + 4.25783I
u = 0.547424 0.585652I
a = 1.112690 + 0.371716I
b = 0
0.66484 + 1.39709I 1.91043 4.25783I
u = 0.547424 + 1.120870I
a = 0.237691 0.353773I
b = 0
4.26996 + 7.64338I 3.62082 1.58240I
u = 0.547424 1.120870I
a = 0.237691 + 0.353773I
b = 0
4.26996 7.64338I 3.62082 + 1.58240I
17
IV. I
u
4
= h13362a
5
u 25075a
4
u + · · · + 39143a + 74777, 5a
5
u + 14a
4
u +
· · · + 10a
2
13a, u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
a
0.500206a
5
u + 0.938682a
4
u + ··· 1.46532a 2.79927
a
8
=
1
1
a
6
=
0.0900311a
5
u 1.26744a
4
u + ··· + 3.52978a 0.500618
0.0680942a
5
u 1.17486a
4
u + ··· + 2.89286a + 0.341631
a
3
=
0.542657a
5
u 0.659567a
4
u + ··· + 0.405121a + 2.59499
0.125332a
5
u 2.12833a
4
u + ··· + 5.25085a 2.46026
a
10
=
u
0
a
5
=
0.158125a
5
u 0.0925766a
4
u + ··· + 0.636918a 0.842249
0.0680942a
5
u 1.17486a
4
u + ··· + 2.89286a + 0.341631
a
12
=
0.138884a
5
u + 1.72882a
4
u + ··· 1.87714a 1.14648
1
a
2
=
0.202635a
5
u 0.0151237a
4
u + ··· 1.04395a + 0.630704
0.339086a
5
u 2.83225a
4
u + ··· + 6.33399a + 0.331224
a
1
=
1
0
a
9
=
0.280163a
5
u 0.0168457a
4
u + ··· 2.83113a + 1.59361
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45304
26713
a
5
u +
242984
26713
a
4
u + ···
450232
26713
a
205440
26713
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
2
, c
6
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
3
, c
4
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
5
u
12
u
10
+ 5u
8
+ 6u
4
3u
2
+ 1
c
7
, c
9
, c
10
c
12
(u
2
+ 1)
6
c
8
u
12
+ 2u
11
+ ··· + 192u + 64
c
11
u
12
2u
11
+ ··· 192u + 64
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
2
, c
3
, c
4
c
6
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
5
(y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
c
7
, c
9
, c
10
c
12
(y + 1)
12
c
8
, c
11
y
12
12y
10
+ 736y
8
3584y
6
+ 9472y
4
9216y
2
+ 4096
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.973865 0.455201I
b = 1.073950 0.558752I
3.28987 + 5.69302I 6.00000 5.51057I
u = 1.000000I
a = 0.008563 + 0.670038I
b = 1.002190 0.295542I
1.39926 0.92430I 2.28328 + 0.79423I
u = 1.000000I
a = 1.320500 + 0.473476I
b = 1.002190 + 0.295542I
1.39926 + 0.92430I 2.28328 0.79423I
u = 1.000000I
a = 0.143638 + 0.307302I
b = 1.073950 + 0.558752I
3.28987 5.69302I 6.00000 + 5.51057I
u = 1.000000I
a = 1.96360 + 0.56994I
b = 0.428243 0.664531I
5.18047 0.92430I 9.71672 + 0.79423I
u = 1.000000I
a = 2.55469 + 3.43444I
b = 0.428243 + 0.664531I
5.18047 + 0.92430I 9.71672 0.79423I
u = 1.000000I
a = 0.973865 + 0.455201I
b = 1.073950 + 0.558752I
3.28987 5.69302I 6.00000 + 5.51057I
u = 1.000000I
a = 0.008563 0.670038I
b = 1.002190 + 0.295542I
1.39926 + 0.92430I 2.28328 0.79423I
u = 1.000000I
a = 1.320500 0.473476I
b = 1.002190 0.295542I
1.39926 0.92430I 2.28328 + 0.79423I
u = 1.000000I
a = 0.143638 0.307302I
b = 1.073950 0.558752I
3.28987 + 5.69302I 6.00000 5.51057I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.96360 0.56994I
b = 0.428243 + 0.664531I
5.18047 + 0.92430I 9.71672 0.79423I
u = 1.000000I
a = 2.55469 3.43444I
b = 0.428243 0.664531I
5.18047 0.92430I 9.71672 + 0.79423I
22
V. I
u
5
= hb, u
3
+ a u + 1, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
u
3
+ u 1
0
a
8
=
1
u
2
a
6
=
1
0
a
3
=
u
3
+ u 1
0
a
10
=
u
u
3
+ u
a
5
=
u
4
+ u
2
+ 1
u
5
2u
3
+ u
2
2u + 1
a
12
=
2u
5
3u
3
+ u
2
2u + 1
2u
5
u
4
+ 3u
3
2u
2
+ 3u 2
a
2
=
u
4
+ u
3
u
2
+ u 2
u
5
+ 2u
3
u
2
+ 2u 1
a
1
=
u
4
u
2
1
u
5
+ 2u
3
u
2
+ 2u 1
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
5
+ 3u
3
+ 2u
2
+ 3u 4
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
6
u
6
c
4
(u + 1)
6
c
5
(u
3
u
2
+ 1)
2
c
7
, c
9
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
8
, c
11
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
10
, c
12
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
(y
3
y
2
+ 2y 1)
2
c
7
, c
9
, c
10
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
8
, c
11
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.122561 + 0.744862I
b = 0
1.91067 2.82812I 0.28809 + 2.59975I
u = 0.498832 1.001300I
a = 0.122561 0.744862I
b = 0
1.91067 + 2.82812I 0.28809 2.59975I
u = 0.284920 + 1.115140I
a = 1.75488
b = 0
6.04826 12.42382 + 0.I
u = 0.284920 1.115140I
a = 1.75488
b = 0
6.04826 12.42382 + 0.I
u = 0.713912 + 0.305839I
a = 0.122561 + 0.744862I
b = 0
1.91067 2.82812I 0.28809 + 2.59975I
u = 0.713912 0.305839I
a = 0.122561 0.744862I
b = 0
1.91067 + 2.82812I 0.28809 2.59975I
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· ((u
12
+ 14u
10
+ ··· + 12u + 1)
2
)(u
26
+ 7u
25
+ ··· + 801u + 256)
c
2
(u 1)
10
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
· (u
12
4u
11
+ 8u
10
5u
9
5u
8
+ 15u
7
9u
6
+ 8u
4
2u
3
2u
2
+ 4u 1)
2
· (u
26
5u
25
+ ··· 97u + 16)
c
3
u
10
(u
6
u
5
+ ··· u + 1)
2
(u
12
+ u
11
+ ··· + 36u + 8)
2
· (u
26
+ 3u
25
+ ··· 288u + 256)
c
4
(u + 1)
10
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
· (u
12
4u
11
+ 8u
10
5u
9
5u
8
+ 15u
7
9u
6
+ 8u
4
2u
3
2u
2
+ 4u 1)
2
· (u
26
5u
25
+ ··· 97u + 16)
c
5
((u
3
u
2
+ 1)
2
)(u
4
+ 3u
3
+ ··· + 3u + 2)(u
12
u
10
+ ··· 3u
2
+ 1)
· (u
12
2u
11
+ u
10
+ 2u
9
+ u
8
6u
7
+ 4u
6
+ 3u
5
6u
3
+ 3u
2
+ u 1)
2
· (u
26
+ 6u
25
+ ··· + 12u + 4)
c
6
u
10
(u
6
+ u
5
+ ··· + u + 1)
2
(u
12
+ u
11
+ ··· + 36u + 8)
2
· (u
26
+ 3u
25
+ ··· 288u + 256)
c
7
, c
9
(u
2
+ 1)
6
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
24
+ 2u
23
+ ··· 20u + 17)(u
26
+ 2u
24
+ ··· + u + 1)
c
8
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
12
+ 2u
11
+ ··· + 192u + 64)(u
24
4u
23
+ ··· + 206508u + 103417)
· (u
26
4u
25
+ ··· + 64u + 64)
c
10
, c
12
(u
2
+ 1)
6
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
24
+ 2u
23
+ ··· 20u + 17)(u
26
+ 2u
24
+ ··· + u + 1)
c
11
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
12
2u
11
+ ··· 192u + 64)(u
24
4u
23
+ ··· + 206508u + 103417)
· (u
26
4u
25
+ ··· + 64u + 64)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
12
+ 28y
11
+ ··· 136y + 1)
2
· (y
26
+ 29y
25
+ ··· 2714689y + 65536)
c
2
, c
4
(y 1)
10
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· ((y
12
+ 14y
10
+ ··· 12y + 1)
2
)(y
26
7y
25
+ ··· 801y + 256)
c
3
, c
6
y
10
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
12
21y
11
+ ··· 464y + 64)
2
· (y
26
27y
25
+ ··· 709632y + 65536)
c
5
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· ((y
6
y
5
+ 5y
4
+ 6y
2
3y + 1)
2
)(y
12
2y
11
+ ··· 7y + 1)
2
· (y
26
4y
25
+ ··· + 8y + 16)
c
7
, c
9
, c
10
c
12
(y + 1)
12
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
24
+ 6y
23
+ ··· 672y + 289)(y
26
+ 4y
25
+ ··· + 11y + 1)
c
8
, c
11
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
12
12y
10
+ 736y
8
3584y
6
+ 9472y
4
9216y
2
+ 4096)
· (y
24
+ 10y
23
+ ··· 21593989544y + 10695075889)
· (y
26
+ 40y
25
+ ··· + 114688y + 4096)
28