12n
0142
(K12n
0142
)
A knot diagram
1
Linearized knot diagam
3 4 10 2 9 3 12 4 6 7 8 11
Solving Sequence
3,10 4,6
7 11 2 1 9 5 8 12
c
3
c
6
c
10
c
2
c
1
c
9
c
5
c
8
c
12
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2.35580 × 10
24
u
34
+ 5.23556 × 10
24
u
33
+ ··· + 1.45032 × 10
25
b 1.44449 × 10
25
,
2.40552 × 10
24
u
34
+ 8.47444 × 10
24
u
33
+ ··· + 7.25161 × 10
24
a + 1.23374 × 10
25
, u
35
+ 2u
34
+ ··· + 2u 1i
I
u
2
= hb
4
+ 4b
3
u 4b
3
4b
2
u + u 1, a u + 1, u
2
u + 1i
I
u
3
= hb
3
3b
2
u 3b
2
+ 3bu + 1, a + u + 1, u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.36 × 10
24
u
34
+ 5.24 × 10
24
u
33
+ · · · + 1.45 × 10
25
b 1.44 × 10
25
, 2.41 ×
10
24
u
34
+8.47×10
24
u
33
+· · ·+7.25×10
24
a+1.23×10
25
, u
35
+2u
34
+· · ·+2u1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
0.331722u
34
1.16863u
33
+ ··· 6.30773u 1.70134
0.162433u
34
0.360993u
33
+ ··· + 0.130097u + 0.995980
a
7
=
0.494155u
34
1.52962u
33
+ ··· 6.17763u 0.705356
0.162433u
34
0.360993u
33
+ ··· + 0.130097u + 0.995980
a
11
=
0.593442u
34
+ 0.968496u
33
+ ··· 3.97361u + 2.63388
0.474317u
34
1.15537u
33
+ ··· + 1.27477u + 0.0691574
a
2
=
u
2
+ 1
u
4
a
1
=
u
4
+ u
2
+ 1
u
4
a
9
=
1.46457u
34
+ 3.18756u
33
+ ··· 3.14002u + 2.39592
0.396812u
34
1.06370u
33
+ ··· 0.108352u + 0.168805
a
5
=
u
4
+ u
2
+ 1
u
6
+ u
2
a
8
=
1.03514u
34
+ 2.01243u
33
+ ··· 4.19611u + 2.30630
0.466022u
34
1.17415u
33
+ ··· + 0.0947758u 0.147474
a
12
=
0.214267u
34
0.843549u
33
+ ··· 2.91396u + 3.23369
0.447509u
34
0.903401u
33
+ ··· + 3.98711u 0.173391
(ii) Obstruction class = 1
(iii) Cusp Shapes =
293178633293666810040513
1812902632604430856362551
u
34
1485220871768859334081099
7251610530417723425450204
u
33
+ ···
22519370902193600570526111
1812902632604430856362551
u
6630145935705280334996315
3625805265208861712725102
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
+ 54u
34
+ ··· + 132u 1
c
2
, c
4
u
35
6u
34
+ ··· 4u + 1
c
3
u
35
+ 2u
34
+ ··· + 2u 1
c
5
, c
9
u
35
+ 3u
34
+ ··· 83u + 13
c
6
u
35
+ 2u
34
+ ··· + 178664u + 28669
c
7
, c
11
u
35
+ u
34
+ ··· + 4u + 4
c
8
u
35
2u
34
+ ··· + 342120u + 112661
c
10
u
35
u
34
+ ··· 1020u + 404
c
12
u
35
15u
34
+ ··· 80u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
138y
34
+ ··· + 4900y 1
c
2
, c
4
y
35
+ 54y
34
+ ··· + 132y 1
c
3
y
35
+ 6y
34
+ ··· 4y 1
c
5
, c
9
y
35
55y
34
+ ··· 1795y 169
c
6
y
35
+ 42y
34
+ ··· 5590382760y 821911561
c
7
, c
11
y
35
+ 15y
34
+ ··· 80y 16
c
8
y
35
90y
34
+ ··· 117701124860y 12692500921
c
10
y
35
+ 15y
34
+ ··· 4334416y 163216
c
12
y
35
+ 15y
34
+ ··· + 768y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.604506 + 0.837594I
a = 0.448438 0.357846I
b = 0.689783 + 0.188000I
0.48340 + 2.36916I 1.57611 4.50521I
u = 0.604506 0.837594I
a = 0.448438 + 0.357846I
b = 0.689783 0.188000I
0.48340 2.36916I 1.57611 + 4.50521I
u = 0.390242 + 0.879154I
a = 0.310445 0.133927I
b = 0.23755 + 1.43913I
2.56414 5.90559I 4.16775 + 8.40016I
u = 0.390242 0.879154I
a = 0.310445 + 0.133927I
b = 0.23755 1.43913I
2.56414 + 5.90559I 4.16775 8.40016I
u = 0.291312 + 0.893061I
a = 0.518425 + 1.133840I
b = 1.01576 1.21326I
0.669990 1.198850I 0.589488 0.204869I
u = 0.291312 0.893061I
a = 0.518425 1.133840I
b = 1.01576 + 1.21326I
0.669990 + 1.198850I 0.589488 + 0.204869I
u = 0.201059 + 0.882276I
a = 0.570013 0.061429I
b = 1.146370 + 0.781662I
3.35367 + 0.99605I 6.08668 + 0.22244I
u = 0.201059 0.882276I
a = 0.570013 + 0.061429I
b = 1.146370 0.781662I
3.35367 0.99605I 6.08668 0.22244I
u = 0.396959 + 0.761909I
a = 0.353852 0.098553I
b = 0.252788 0.797693I
0.24170 + 1.75473I 0.43635 4.44927I
u = 0.396959 0.761909I
a = 0.353852 + 0.098553I
b = 0.252788 + 0.797693I
0.24170 1.75473I 0.43635 + 4.44927I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.985569 + 0.598689I
a = 1.338090 + 0.075762I
b = 0.543514 1.234170I
5.47439 0.97053I 6.95717 + 0.21297I
u = 0.985569 0.598689I
a = 1.338090 0.075762I
b = 0.543514 + 1.234170I
5.47439 + 0.97053I 6.95717 0.21297I
u = 0.975167 + 0.760910I
a = 1.202040 + 0.021054I
b = 1.02372 + 1.38759I
4.82985 + 6.52855I 5.30987 5.93880I
u = 0.975167 0.760910I
a = 1.202040 0.021054I
b = 1.02372 1.38759I
4.82985 6.52855I 5.30987 + 5.93880I
u = 0.704227 + 1.101200I
a = 0.164791 1.088000I
b = 0.89159 + 1.41508I
3.55483 0.18354I 5.27168 + 1.44891I
u = 0.704227 1.101200I
a = 0.164791 + 1.088000I
b = 0.89159 1.41508I
3.55483 + 0.18354I 5.27168 1.44891I
u = 0.581677 + 1.185630I
a = 0.272346 + 1.132270I
b = 0.42884 2.03294I
3.30526 4.99735I 4.49983 + 4.97284I
u = 0.581677 1.185630I
a = 0.272346 1.132270I
b = 0.42884 + 2.03294I
3.30526 + 4.99735I 4.49983 4.97284I
u = 0.574590 + 0.262572I
a = 0.828257 0.616246I
b = 0.014775 0.612549I
0.98087 + 1.09493I 5.80678 3.92220I
u = 0.574590 0.262572I
a = 0.828257 + 0.616246I
b = 0.014775 + 0.612549I
0.98087 1.09493I 5.80678 + 3.92220I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.978178 + 0.990672I
a = 0.991907 + 0.901079I
b = 0.57751 1.46799I
10.30070 + 3.59687I 2.12620 2.06254I
u = 0.978178 0.990672I
a = 0.991907 0.901079I
b = 0.57751 + 1.46799I
10.30070 3.59687I 2.12620 + 2.06254I
u = 1.12687 + 0.87702I
a = 1.01739 + 0.99553I
b = 0.581005 1.085740I
15.7264 5.1315I 4.99224 + 2.26947I
u = 1.12687 0.87702I
a = 1.01739 0.99553I
b = 0.581005 + 1.085740I
15.7264 + 5.1315I 4.99224 2.26947I
u = 0.553000 + 0.079189I
a = 1.19162 0.95512I
b = 0.541286 0.641792I
0.51946 3.30014I 3.55846 + 2.28251I
u = 0.553000 0.079189I
a = 1.19162 + 0.95512I
b = 0.541286 + 0.641792I
0.51946 + 3.30014I 3.55846 2.28251I
u = 1.11285 + 0.95383I
a = 1.03608 0.96278I
b = 0.35648 + 1.52175I
17.5409 1.1078I 6.65030 + 1.84113I
u = 1.11285 0.95383I
a = 1.03608 + 0.96278I
b = 0.35648 1.52175I
17.5409 + 1.1078I 6.65030 1.84113I
u = 0.93478 + 1.13030I
a = 1.030020 + 0.817450I
b = 1.15562 2.30328I
14.8325 + 12.6268I 3.98580 6.37716I
u = 0.93478 1.13030I
a = 1.030020 0.817450I
b = 1.15562 + 2.30328I
14.8325 12.6268I 3.98580 + 6.37716I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.98846 + 1.10575I
a = 1.042800 0.852917I
b = 0.75564 + 2.24982I
16.9917 6.5550I 6.22803 + 2.34101I
u = 0.98846 1.10575I
a = 1.042800 + 0.852917I
b = 0.75564 2.24982I
16.9917 + 6.5550I 6.22803 2.34101I
u = 0.002637 + 0.401944I
a = 0.40921 2.57831I
b = 1.287540 + 0.119160I
0.99468 + 3.59879I 0.61353 4.53406I
u = 0.002637 0.401944I
a = 0.40921 + 2.57831I
b = 1.287540 0.119160I
0.99468 3.59879I 0.61353 + 4.53406I
u = 0.387505
a = 3.03811
b = 0.784090
1.97384 5.96760
8
II. I
u
2
= hb
4
+ 4b
3
u 4b
3
4b
2
u + u 1, a u + 1, u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u 1
a
6
=
u 1
b
a
7
=
b + u 1
b
a
11
=
b
2
u 2b u + 1
b
2
u b + u
a
2
=
u
u
a
1
=
0
u
a
9
=
u + 1
b + u
a
5
=
0
u
a
8
=
b u + 1
bu + u
a
12
=
2b
2
u 4b
b
3
u b
3
b
2
u b
2
2bu + b + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
2
u + 4b
2
+ 8bu + 4u 4
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
5
(u + 1)
8
c
6
u
8
+ 4u
7
+ 12u
6
+ 16u
5
+ 15u
4
8u
3
4u
2
+ 1
c
7
, c
11
(u
4
+ 2u
2
+ 2)
2
c
8
u
8
4u
7
+ 12u
6
16u
5
+ 15u
4
+ 8u
3
4u
2
+ 1
c
9
(u 1)
8
c
10
(u
4
2u
2
+ 2)
2
c
12
(u
2
2u + 2)
4
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
(y
2
+ y + 1)
4
c
5
, c
9
(y 1)
8
c
6
, c
8
y
8
+ 8y
7
+ 46y
6
+ 160y
5
+ 387y
4
160y
3
+ 46y
2
8y + 1
c
7
, c
11
(y
2
+ 2y + 2)
4
c
10
(y
2
2y + 2)
4
c
12
(y
2
+ 4)
4
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.344777 + 0.313008I
0.82247 5.69375I 2.00000 + 7.46410I
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.443461 0.142082I
0.82247 + 1.63398I 2.00000 0.53590I
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 1.44346 1.58997I
0.82247 + 1.63398I 2.00000 0.53590I
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.65522 2.04506I
0.82247 5.69375I 2.00000 + 7.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.443461 + 0.142082I
0.82247 + 5.69375I 2.00000 7.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.344777 0.313008I
0.82247 1.63398I 2.00000 + 0.53590I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 1.44346 + 1.58997I
0.82247 1.63398I 2.00000 + 0.53590I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.65522 + 2.04506I
0.82247 + 5.69375I 2.00000 7.46410I
12
III. I
u
3
= hb
3
3b
2
u 3b
2
+ 3bu + 1, a + u + 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u 1
a
6
=
u 1
b
a
7
=
b u 1
b
a
11
=
b
2
u + 2b u 1
b
2
u + b + u
a
2
=
u
u
a
1
=
0
u
a
9
=
u 1
b + u
a
5
=
0
u
a
8
=
b u 1
bu + u
a
12
=
0
b
2
+ 2bu + 2b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2b
2
u 2b
2
+ 4bu 4u 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
2
u + 1)
3
c
2
, c
3
, c
6
c
8
(u
2
+ u + 1)
3
c
5
(u 1)
6
c
7
, c
10
, c
11
c
12
u
6
c
9
(u + 1)
6
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
8
(y
2
+ y + 1)
3
c
5
, c
9
(y 1)
6
c
7
, c
10
, c
11
c
12
y
6
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
7
)(u
35
+ 54u
34
+ ··· + 132u 1)
c
2
((u
2
+ u + 1)
7
)(u
35
6u
34
+ ··· 4u + 1)
c
3
((u
2
u + 1)
4
)(u
2
+ u + 1)
3
(u
35
+ 2u
34
+ ··· + 2u 1)
c
4
((u
2
u + 1)
7
)(u
35
6u
34
+ ··· 4u + 1)
c
5
((u 1)
6
)(u + 1)
8
(u
35
+ 3u
34
+ ··· 83u + 13)
c
6
(u
2
+ u + 1)
3
(u
8
+ 4u
7
+ 12u
6
+ 16u
5
+ 15u
4
8u
3
4u
2
+ 1)
· (u
35
+ 2u
34
+ ··· + 178664u + 28669)
c
7
, c
11
u
6
(u
4
+ 2u
2
+ 2)
2
(u
35
+ u
34
+ ··· + 4u + 4)
c
8
(u
2
+ u + 1)
3
(u
8
4u
7
+ 12u
6
16u
5
+ 15u
4
+ 8u
3
4u
2
+ 1)
· (u
35
2u
34
+ ··· + 342120u + 112661)
c
9
((u 1)
8
)(u + 1)
6
(u
35
+ 3u
34
+ ··· 83u + 13)
c
10
u
6
(u
4
2u
2
+ 2)
2
(u
35
u
34
+ ··· 1020u + 404)
c
12
u
6
(u
2
2u + 2)
4
(u
35
15u
34
+ ··· 80u + 16)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
7
)(y
35
138y
34
+ ··· + 4900y 1)
c
2
, c
4
((y
2
+ y + 1)
7
)(y
35
+ 54y
34
+ ··· + 132y 1)
c
3
((y
2
+ y + 1)
7
)(y
35
+ 6y
34
+ ··· 4y 1)
c
5
, c
9
((y 1)
14
)(y
35
55y
34
+ ··· 1795y 169)
c
6
(y
2
+ y + 1)
3
· (y
8
+ 8y
7
+ 46y
6
+ 160y
5
+ 387y
4
160y
3
+ 46y
2
8y + 1)
· (y
35
+ 42y
34
+ ··· 5590382760y 821911561)
c
7
, c
11
y
6
(y
2
+ 2y + 2)
4
(y
35
+ 15y
34
+ ··· 80y 16)
c
8
(y
2
+ y + 1)
3
· (y
8
+ 8y
7
+ 46y
6
+ 160y
5
+ 387y
4
160y
3
+ 46y
2
8y + 1)
· (y
35
90y
34
+ ··· 117701124860y 12692500921)
c
10
y
6
(y
2
2y + 2)
4
(y
35
+ 15y
34
+ ··· 4334416y 163216)
c
12
y
6
(y
2
+ 4)
4
(y
35
+ 15y
34
+ ··· + 768y 256)
18