12n
0143
(K12n
0143
)
A knot diagram
1
Linearized knot diagam
3 4 10 2 9 3 12 4 6 8 7 11
Solving Sequence
8,12 3,7
6 11 1 10 4 2 5 9
c
7
c
6
c
11
c
12
c
10
c
3
c
2
c
4
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−5018882u
19
3159071u
18
+ ··· + 35542844b 8946208,
4030002u
19
+ 3341564u
18
+ ··· + 35542844a + 3081004, u
20
u
19
+ ··· + 4u 4i
I
u
2
= h−3u
3
a + 4u
2
a 8u
3
+ 5au + 2u
2
+ 13b + 2a + 9u + 1, 3u
3
a 2u
2
a + 2a
2
u
2
+ 4a + 6u 2,
u
4
2u
2
+ 2i
I
v
1
= ha, b + v, v
2
v + 1i
* 3 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.02 × 10
6
u
19
3.16 × 10
6
u
18
+ · · · + 3.55 × 10
7
b 8.95 × 10
6
, 4.03 ×
10
6
u
19
+ 3.34 × 10
6
u
18
+ · · · + 3.55 × 10
7
a + 3.08 × 10
6
, u
20
u
19
+ · · · + 4u 4i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
3
=
0.113384u
19
0.0940151u
18
+ ··· + 0.649600u 0.0866842
0.141207u
19
+ 0.0888806u
18
+ ··· + 0.434285u + 0.251702
a
7
=
1
u
2
a
6
=
0.334897u
19
0.0768593u
18
+ ··· + 0.470869u + 2.67956
0.0397535u
19
+ 0.166369u
18
+ ··· 0.371958u 0.816791
a
11
=
u
u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
10
=
u
3
u
3
+ u
a
4
=
0.254108u
19
0.153593u
18
+ ··· + 0.947053u 0.825468
0.171597u
19
+ 0.0740954u
18
+ ··· + 0.128017u + 0.521714
a
2
=
0.199337u
19
+ 0.0822480u
18
+ ··· + 0.449295u 0.850726
0.0288459u
19
+ 0.0324049u
18
+ ··· + 1.28582u + 0.0973546
a
5
=
0.0739774u
19
0.140245u
18
+ ··· + 0.662127u 0.407213
0.137706u
19
0.0252866u
18
+ ··· + 0.141019u + 0.447024
a
9
=
0.455718u
19
+ 0.276225u
18
+ ··· + 0.309258u 2.11593
0.200598u
19
0.0655987u
18
+ ··· + 0.985773u 0.419904
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16163108
8885711
u
19
+
7616138
8885711
u
18
+ ···
81238406
8885711
u
119525194
8885711
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 48u
19
+ ··· 52526u + 625
c
2
, c
4
u
20
+ 24u
18
+ ··· + 74u + 25
c
3
u
20
+ 2u
19
+ ··· + 12u + 5
c
5
, c
9
u
20
+ 3u
19
+ ··· + u 1
c
6
u
20
+ 4u
19
+ ··· 51528u 13061
c
7
, c
11
u
20
+ u
19
+ ··· 4u 4
c
8
u
20
16u
19
+ ··· 18622u 15107
c
10
u
20
+ 3u
19
+ ··· + 116u + 76
c
12
u
20
+ 15u
19
+ ··· + 80u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
400y
19
+ ··· 3308161926y + 390625
c
2
, c
4
y
20
+ 48y
19
+ ··· 52526y + 625
c
3
y
20
+ 24y
18
+ ··· 74y + 25
c
5
, c
9
y
20
45y
19
+ ··· + 77y + 1
c
6
y
20
+ 60y
19
+ ··· 809328142y + 170589721
c
7
, c
11
y
20
15y
19
+ ··· 80y + 16
c
8
y
20
120y
19
+ ··· 367173334y + 228221449
c
10
y
20
+ 45y
19
+ ··· 68176y + 5776
c
12
y
20
15y
19
+ ··· + 768y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.027210 + 0.343771I
a = 0.25199 2.64585I
b = 0.766725 + 1.006540I
2.86803 3.80264I 6.48723 + 4.67286I
u = 1.027210 0.343771I
a = 0.25199 + 2.64585I
b = 0.766725 1.006540I
2.86803 + 3.80264I 6.48723 4.67286I
u = 1.095930 + 0.435073I
a = 1.163710 0.763492I
b = 0.458140 + 0.989102I
2.45038 + 5.65982I 4.21302 7.24292I
u = 1.095930 0.435073I
a = 1.163710 + 0.763492I
b = 0.458140 0.989102I
2.45038 5.65982I 4.21302 + 7.24292I
u = 0.722942 + 0.357669I
a = 0.128326 1.009150I
b = 0.238239 0.123051I
0.99363 + 1.64776I 1.20276 5.62384I
u = 0.722942 0.357669I
a = 0.128326 + 1.009150I
b = 0.238239 + 0.123051I
0.99363 1.64776I 1.20276 + 5.62384I
u = 0.106031 + 1.190120I
a = 0.299156 + 0.869186I
b = 0.09465 2.29475I
19.2969 + 4.5215I 5.96688 1.69232I
u = 0.106031 1.190120I
a = 0.299156 0.869186I
b = 0.09465 + 2.29475I
19.2969 4.5215I 5.96688 + 1.69232I
u = 0.634751 + 0.432509I
a = 0.196432 0.368569I
b = 0.643286 + 0.493353I
1.74557 + 0.63892I 5.74453 + 1.51352I
u = 0.634751 0.432509I
a = 0.196432 + 0.368569I
b = 0.643286 0.493353I
1.74557 0.63892I 5.74453 1.51352I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.739383
a = 0.350220
b = 0.508808
0.989681 10.9360
u = 1.350830 + 0.261047I
a = 1.05824 1.16450I
b = 0.045773 + 1.216250I
4.75007 0.87462I 9.06700 + 0.37407I
u = 1.350830 0.261047I
a = 1.05824 + 1.16450I
b = 0.045773 1.216250I
4.75007 + 0.87462I 9.06700 0.37407I
u = 0.255829 + 0.544433I
a = 0.156916 + 1.044260I
b = 0.341861 + 0.731952I
0.11659 1.77179I 0.89537 + 3.37821I
u = 0.255829 0.544433I
a = 0.156916 1.044260I
b = 0.341861 0.731952I
0.11659 + 1.77179I 0.89537 3.37821I
u = 1.35494 + 0.64126I
a = 1.91114 + 2.01731I
b = 0.21695 2.30777I
15.4383 10.9552I 7.83113 + 4.63988I
u = 1.35494 0.64126I
a = 1.91114 2.01731I
b = 0.21695 + 2.30777I
15.4383 + 10.9552I 7.83113 4.63988I
u = 1.52619
a = 1.06989
b = 0.168676
9.28250 9.91420
u = 1.50565 + 0.55625I
a = 0.67058 + 2.22111I
b = 0.01682 2.17499I
14.2365 + 1.7524I 8.57238 0.70411I
u = 1.50565 0.55625I
a = 0.67058 2.22111I
b = 0.01682 + 2.17499I
14.2365 1.7524I 8.57238 + 0.70411I
6
II. I
u
2
=
h−3u
3
a 8u
3
+· · ·+ 2a +1, 3u
3
a 2u
2
a +2a
2
u
2
+4a + 6u 2, u
4
2u
2
+2i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
3
=
a
0.230769au
3
+ 0.615385u
3
+ ··· 0.153846a 0.0769231
a
7
=
1
u
2
a
6
=
1.61538au
3
1.80769u
3
+ ··· 0.923077a + 1.53846
0.769231au
3
+ 1.38462u
3
+ ··· + 0.153846a + 1.07692
a
11
=
u
u
3
+ u
a
1
=
u
3
u
3
u
a
10
=
u
3
u
3
+ u
a
4
=
0.769231au
3
+ 1.38462u
3
+ ··· + 1.15385a 0.923077
0.230769au
3
0.615385u
3
+ ··· + 0.153846a + 0.0769231
a
2
=
0.384615au
3
2.19231u
3
+ ··· 0.0769231a 1.53846
0.461538au
3
+ 2.23077u
3
+ ··· 0.307692a + 0.846154
a
5
=
u
3
u
3
+ u
a
9
=
1.61538au
3
+ 2.80769u
3
+ ··· + 0.923077a 1.53846
0.769231au
3
2.38462u
3
+ ··· 0.153846a 1.07692
(ii) Obstruction class = 1
(iii) Cusp Shapes =
12
13
u
3
a +
16
13
u
2
a +
20
13
u
3
+
20
13
au +
60
13
u
2
+
8
13
a
16
13
u
152
13
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
5
(u + 1)
8
c
6
u
8
+ 4u
7
+ 8u
6
+ 16u
5
+ 27u
4
+ 24u
3
+ 24u
2
+ 40u + 25
c
7
, c
11
(u
4
2u
2
+ 2)
2
c
8
u
8
4u
7
+ 8u
6
16u
5
+ 27u
4
24u
3
+ 24u
2
40u + 25
c
9
(u 1)
8
c
10
(u
4
+ 2u
2
+ 2)
2
c
12
(u
2
+ 2u + 2)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
(y
2
+ y + 1)
4
c
5
, c
9
(y 1)
8
c
6
, c
8
y
8
10y
6
+ 32y
5
+ 75y
4
160y
3
+ 6y
2
400y + 625
c
7
, c
11
(y
2
2y + 2)
4
c
10
(y
2
+ 2y + 2)
4
c
12
(y
2
+ 4)
4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.098680 + 0.455090I
a = 0.789474 + 0.479379I
b = 0.044910 + 0.232659I
4.11234 5.69375I 10.00000 + 7.46410I
u = 1.098680 + 0.455090I
a = 1.17592 1.81004I
b = 0.04491 + 1.96471I
4.11234 1.63398I 10.00000 + 0.53590I
u = 1.098680 0.455090I
a = 0.789474 0.479379I
b = 0.044910 0.232659I
4.11234 + 5.69375I 10.00000 7.46410I
u = 1.098680 0.455090I
a = 1.17592 + 1.81004I
b = 0.04491 1.96471I
4.11234 + 1.63398I 10.00000 0.53590I
u = 1.098680 + 0.455090I
a = 1.55613 1.07799I
b = 0.955090 + 0.232659I
4.11234 + 1.63398I 10.00000 0.53590I
u = 1.098680 + 0.455090I
a = 1.52152 2.25267I
b = 0.95509 + 1.96471I
4.11234 + 5.69375I 10.00000 7.46410I
u = 1.098680 0.455090I
a = 1.55613 + 1.07799I
b = 0.955090 0.232659I
4.11234 1.63398I 10.00000 + 0.53590I
u = 1.098680 0.455090I
a = 1.52152 + 2.25267I
b = 0.95509 1.96471I
4.11234 5.69375I 10.00000 + 7.46410I
10
III. I
v
1
= ha, b + v, v
2
v + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
v
0
a
3
=
0
v
a
7
=
1
0
a
6
=
1
v 1
a
11
=
v
0
a
1
=
v
0
a
10
=
v
0
a
4
=
1
v
a
2
=
v
1
a
5
=
v
0
a
9
=
v + 1
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
2
u + 1
c
2
, c
3
, c
6
c
8
u
2
+ u + 1
c
5
(u 1)
2
c
7
, c
10
, c
11
c
12
u
2
c
9
(u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
8
y
2
+ y + 1
c
5
, c
9
(y 1)
2
c
7
, c
10
, c
11
c
12
y
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
5
)(u
20
+ 48u
19
+ ··· 52526u + 625)
c
2
((u
2
+ u + 1)
5
)(u
20
+ 24u
18
+ ··· + 74u + 25)
c
3
((u
2
u + 1)
4
)(u
2
+ u + 1)(u
20
+ 2u
19
+ ··· + 12u + 5)
c
4
((u
2
u + 1)
5
)(u
20
+ 24u
18
+ ··· + 74u + 25)
c
5
((u 1)
2
)(u + 1)
8
(u
20
+ 3u
19
+ ··· + u 1)
c
6
(u
2
+ u + 1)(u
8
+ 4u
7
+ ··· + 40u + 25)
· (u
20
+ 4u
19
+ ··· 51528u 13061)
c
7
, c
11
u
2
(u
4
2u
2
+ 2)
2
(u
20
+ u
19
+ ··· 4u 4)
c
8
(u
2
+ u + 1)(u
8
4u
7
+ ··· 40u + 25)
· (u
20
16u
19
+ ··· 18622u 15107)
c
9
((u 1)
8
)(u + 1)
2
(u
20
+ 3u
19
+ ··· + u 1)
c
10
u
2
(u
4
+ 2u
2
+ 2)
2
(u
20
+ 3u
19
+ ··· + 116u + 76)
c
12
u
2
(u
2
+ 2u + 2)
4
(u
20
+ 15u
19
+ ··· + 80u + 16)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
5
)(y
20
400y
19
+ ··· 3.30816 × 10
9
y + 390625)
c
2
, c
4
((y
2
+ y + 1)
5
)(y
20
+ 48y
19
+ ··· 52526y + 625)
c
3
((y
2
+ y + 1)
5
)(y
20
+ 24y
18
+ ··· 74y + 25)
c
5
, c
9
((y 1)
10
)(y
20
45y
19
+ ··· + 77y + 1)
c
6
(y
2
+ y + 1)(y
8
10y
6
+ ··· 400y + 625)
· (y
20
+ 60y
19
+ ··· 809328142y + 170589721)
c
7
, c
11
y
2
(y
2
2y + 2)
4
(y
20
15y
19
+ ··· 80y + 16)
c
8
(y
2
+ y + 1)(y
8
10y
6
+ ··· 400y + 625)
· (y
20
120y
19
+ ··· 367173334y + 228221449)
c
10
y
2
(y
2
+ 2y + 2)
4
(y
20
+ 45y
19
+ ··· 68176y + 5776)
c
12
y
2
(y
2
+ 4)
4
(y
20
15y
19
+ ··· + 768y + 256)
16