12n
0145
(K12n
0145
)
A knot diagram
1
Linearized knot diagam
3 4 11 2 10 3 12 4 6 9 8 7
Solving Sequence
4,8 9,11
12 3 2 5 1 7 6 10
c
8
c
11
c
3
c
2
c
4
c
1
c
7
c
6
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.89198 × 10
43
u
23
+ 1.93706 × 10
43
u
22
+ ··· + 7.16795 × 10
45
b + 5.20518 × 10
46
,
8.64361 × 10
44
u
23
3.86826 × 10
43
u
22
+ ··· + 2.95871 × 10
48
a + 6.38636 × 10
47
,
u
24
2u
23
+ ··· 4461u + 2683i
I
u
2
= hu
3
3u
2
+ 2b + 3u 1, u
3
+ 4u
2
+ 6a u 6, u
4
4u
3
+ 4u
2
+ 3i
I
u
3
= hb, a
2
+ a + 1, u + 1i
I
u
4
= h−u
3
3u
2
+ b 3u + 4, 3u
3
8u
2
+ 3a 8u + 12, u
4
+ 2u
3
+ u
2
6u + 3i
I
u
5
= hb, a 1, u
2
u + 1i
* 5 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.89 × 10
43
u
23
+ 1.94 × 10
43
u
22
+ · · · + 7.17 × 10
45
b + 5.21 ×
10
46
, 8.64 × 10
44
u
23
3.87 × 10
43
u
22
+ · · · + 2.96 × 10
48
a + 6.39 ×
10
47
, u
24
2u
23
+ · · · 4461u + 2683i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
0.000292141u
23
+ 0.0000130742u
22
+ ··· + 0.720325u 0.215850
0.00263951u
23
0.00270240u
22
+ ··· + 4.46888u 7.26175
a
12
=
0.00293165u
23
0.00268932u
22
+ ··· + 5.18921u 7.47760
0.00263951u
23
0.00270240u
22
+ ··· + 4.46888u 7.26175
a
3
=
0.00111111u
23
0.00111164u
22
+ ··· + 2.33618u 2.85740
0.00144537u
23
0.00161867u
22
+ ··· + 2.86920u 4.75166
a
2
=
0.00111111u
23
0.00111164u
22
+ ··· + 2.33618u 2.85740
0.00274132u
23
0.00268026u
22
+ ··· + 4.84242u 7.73137
a
5
=
0.00192313u
23
0.00205057u
22
+ ··· + 3.04993u 5.46309
0.00295092u
23
0.00292037u
22
+ ··· + 5.36339u 8.37266
a
1
=
0.00361033u
23
0.00409191u
22
+ ··· + 6.99968u 10.2748
0.00380171u
23
0.00433836u
22
+ ··· + 6.92476u 11.2245
a
7
=
0.00177479u
23
+ 0.00171084u
22
+ ··· 3.65352u + 4.54167
0.00354581u
23
+ 0.00380753u
22
+ ··· 6.59708u + 9.57302
a
6
=
0.000894363u
23
0.000991958u
22
+ ··· + 0.953738u 2.60877
0.00266810u
23
+ 0.00288557u
22
+ ··· 5.10145u + 7.77036
a
10
=
0.00191635u
23
0.00193496u
22
+ ··· + 3.30821u 5.87489
0.00372145u
23
0.00402551u
22
+ ··· + 5.91212u 10.7507
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00451241u
23
0.00553102u
22
+ ··· + 5.54839u 13.6361
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 43u
23
+ ··· + 1172u + 81
c
2
, c
4
u
24
3u
23
+ ··· 68u + 9
c
3
u
24
+ 3u
23
+ ··· 4u + 3
c
5
, c
9
u
24
3u
23
+ ··· + 10u + 3
c
6
u
24
+ 2u
23
+ ··· + 20857u + 9299
c
7
, c
11
, c
12
u
24
+ u
23
+ ··· 32u + 16
c
8
u
24
2u
23
+ ··· 4461u + 2683
c
10
u
24
+ 19u
23
+ ··· + 68u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
117y
23
+ ··· 1128316y + 6561
c
2
, c
4
y
24
+ 43y
23
+ ··· + 1172y + 81
c
3
y
24
+ 3y
23
+ ··· + 68y + 9
c
5
, c
9
y
24
+ 19y
23
+ ··· + 68y + 9
c
6
y
24
+ 82y
23
+ ··· + 1135326279y + 86471401
c
7
, c
11
, c
12
y
24
+ 41y
23
+ ··· + 2048y + 256
c
8
y
24
34y
23
+ ··· 21038113y + 7198489
c
10
y
24
21y
23
+ ··· + 5492y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.232862 + 0.947035I
a = 0.649985 0.077686I
b = 0.374440 + 0.304409I
0.779807 + 1.048970I 7.25519 5.58365I
u = 0.232862 0.947035I
a = 0.649985 + 0.077686I
b = 0.374440 0.304409I
0.779807 1.048970I 7.25519 + 5.58365I
u = 0.943560 + 0.064690I
a = 0.988902 + 0.233923I
b = 0.682289 + 0.802318I
3.89306 0.24557I 2.31984 + 1.35715I
u = 0.943560 0.064690I
a = 0.988902 0.233923I
b = 0.682289 0.802318I
3.89306 + 0.24557I 2.31984 1.35715I
u = 0.959379 + 0.455770I
a = 0.646370 0.274793I
b = 0.415041 + 0.335328I
0.27313 + 3.15044I 2.29434 0.19419I
u = 0.959379 0.455770I
a = 0.646370 + 0.274793I
b = 0.415041 0.335328I
0.27313 3.15044I 2.29434 + 0.19419I
u = 0.502276 + 0.647230I
a = 0.990775 + 0.287392I
b = 0.278387 + 0.380293I
0.422299 + 1.283840I 4.39270 6.02370I
u = 0.502276 0.647230I
a = 0.990775 0.287392I
b = 0.278387 0.380293I
0.422299 1.283840I 4.39270 + 6.02370I
u = 0.933542 + 0.786148I
a = 0.749432 0.148046I
b = 0.084838 1.367360I
4.97420 2.33173I 0.59644 + 2.89442I
u = 0.933542 0.786148I
a = 0.749432 + 0.148046I
b = 0.084838 + 1.367360I
4.97420 + 2.33173I 0.59644 2.89442I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.607235 + 1.070690I
a = 0.470711 + 0.110611I
b = 0.07764 1.45718I
4.85669 2.39093I 0.84102 + 2.37108I
u = 0.607235 1.070690I
a = 0.470711 0.110611I
b = 0.07764 + 1.45718I
4.85669 + 2.39093I 0.84102 2.37108I
u = 1.21724 + 0.74996I
a = 0.400953 1.002140I
b = 0.15154 2.05062I
15.8709 2.8783I 1.59016 + 0.69856I
u = 1.21724 0.74996I
a = 0.400953 + 1.002140I
b = 0.15154 + 2.05062I
15.8709 + 2.8783I 1.59016 0.69856I
u = 1.52531 + 0.37916I
a = 0.108996 0.705821I
b = 0.138338 0.696834I
1.17892 + 4.17832I 0.72824 4.64199I
u = 1.52531 0.37916I
a = 0.108996 + 0.705821I
b = 0.138338 + 0.696834I
1.17892 4.17832I 0.72824 + 4.64199I
u = 1.78012 + 0.29967I
a = 0.680725 + 0.483351I
b = 0.08900 + 1.95850I
18.4389 + 3.9255I 0.72969 1.86370I
u = 1.78012 0.29967I
a = 0.680725 0.483351I
b = 0.08900 1.95850I
18.4389 3.9255I 0.72969 + 1.86370I
u = 1.82828 + 0.75998I
a = 0.679108 0.172953I
b = 0.71021 1.48438I
10.81740 + 5.66544I 1.94284 3.68332I
u = 1.82828 0.75998I
a = 0.679108 + 0.172953I
b = 0.71021 + 1.48438I
10.81740 5.66544I 1.94284 + 3.68332I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.85631 + 0.81470I
a = 0.104205 + 0.704147I
b = 0.40009 + 1.66939I
9.33657 1.50490I 1.60303 + 1.18708I
u = 1.85631 0.81470I
a = 0.104205 0.704147I
b = 0.40009 1.66939I
9.33657 + 1.50490I 1.60303 1.18708I
u = 2.46660 + 0.93685I
a = 0.504632 + 0.296006I
b = 0.28674 + 1.91373I
16.9567 10.8896I 0. + 4.72097I
u = 2.46660 0.93685I
a = 0.504632 0.296006I
b = 0.28674 1.91373I
16.9567 + 10.8896I 0. 4.72097I
7
II. I
u
2
= hu
3
3u
2
+ 2b + 3u 1, u
3
+ 4u
2
+ 6a u 6, u
4
4u
3
+ 4u
2
+ 3i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
1
6
u
3
2
3
u
2
+
1
6
u + 1
1
2
u
3
+
3
2
u
2
3
2
u +
1
2
a
12
=
1
3
u
3
+
5
6
u
2
4
3
u +
3
2
1
2
u
3
+
3
2
u
2
3
2
u +
1
2
a
3
=
1
6
u
3
2
3
u
2
+
7
6
u 1
1
2
u
3
3
2
u
2
+
3
2
u +
1
2
a
2
=
1
6
u
3
2
3
u
2
+
7
6
u 1
u
3
5
2
u
2
+ u +
1
2
a
5
=
1
6
u
3
2
3
u
2
+
1
6
u + 1
1
2
u
3
+
3
2
u
2
3
2
u +
1
2
a
1
=
1
6
u
3
+
2
3
u
2
1
6
u 1
1
2
u
3
3
2
u
2
+
3
2
u
1
2
a
7
=
1
6
u
3
+
7
6
u
2
13
6
u
1
2
2
a
6
=
1
6
u
3
+
2
3
u
2
7
6
u
1
2
u
3
+
1
2
u
2
1
2
u
1
2
a
10
=
1
6
u
3
1
6
u
2
5
6
u +
3
2
1
2
u
3
3
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
8u
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
(u
2
u + 1)
2
c
2
, c
9
, c
10
(u
2
+ u + 1)
2
c
6
u
4
+ 4u
3
+ 4u
2
+ 3
c
7
, c
11
, c
12
(u
2
+ 2)
2
c
8
u
4
4u
3
+ 4u
2
+ 3
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
9
c
10
(y
2
+ y + 1)
2
c
6
, c
8
y
4
8y
3
+ 22y
2
+ 24y + 9
c
7
, c
11
, c
12
(y + 2)
4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.224745 + 0.707107I
a = 1.316500 + 0.288675I
b = 1.414210I
4.93480 + 4.05977I 0. 6.92820I
u = 0.224745 0.707107I
a = 1.316500 0.288675I
b = 1.414210I
4.93480 4.05977I 0. + 6.92820I
u = 2.22474 + 0.70711I
a = 0.316497 0.288675I
b = 1.414210I
4.93480 4.05977I 0. + 6.92820I
u = 2.22474 0.70711I
a = 0.316497 + 0.288675I
b = 1.414210I
4.93480 + 4.05977I 0. 6.92820I
11
III. I
u
3
= hb, a
2
+ a + 1, u + 1i
(i) Arc colorings
a
4
=
0
1
a
8
=
1
0
a
9
=
1
1
a
11
=
a
0
a
12
=
a
0
a
3
=
a + 1
1
a
2
=
a + 1
a
a
5
=
a
0
a
1
=
a
0
a
7
=
1
0
a
6
=
a
1
a
10
=
0
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a + 2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
9
u
2
u + 1
c
2
, c
3
, c
5
c
10
u
2
+ u + 1
c
6
, c
8
(u + 1)
2
c
7
, c
11
, c
12
u
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
9
c
10
y
2
+ y + 1
c
6
, c
8
(y 1)
2
c
7
, c
11
, c
12
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0
4.05977I 6.00000 6.92820I
u = 1.00000
a = 0.500000 0.866025I
b = 0
4.05977I 6.00000 + 6.92820I
15
IV.
I
u
4
= h−u
3
3u
2
+b 3u+4, 3u
3
8u
2
+3a 8u+12, u
4
+2u
3
+u
2
6u +3i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
u
3
+
8
3
u
2
+
8
3
u 4
u
3
+ 3u
2
+ 3u 4
a
12
=
2u
3
+
17
3
u
2
+
17
3
u 8
u
3
+ 3u
2
+ 3u 4
a
3
=
2
3
u
3
2u
2
7
3
u + 2
1
3
u
3
4
3
u
2
u + 1
a
2
=
2
3
u
3
2u
2
7
3
u + 2
2
3
u
3
8
3
u
2
3u + 3
a
5
=
u
3
+
8
3
u
2
+
8
3
u 4
u
3
+ 3u
2
+ 3u 4
a
1
=
u
3
8
3
u
2
8
3
u + 4
u
3
3u
2
3u + 4
a
7
=
1
3
u
3
u
2
5
3
u 1
2
a
6
=
1
3
u
3
+
2
3
u
2
+
1
3
u 3
2
3
u
3
+
2
3
u
2
+ u 3
a
10
=
5
3
u
3
+
13
3
u
2
+
14
3
u 6
5
3
u
3
+
14
3
u
2
+ 3u 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
(u
2
u + 1)
2
c
2
, c
9
, c
10
(u
2
+ u + 1)
2
c
6
u
4
2u
3
+ u
2
+ 6u + 3
c
7
, c
11
, c
12
(u
2
+ 2)
2
c
8
u
4
+ 2u
3
+ u
2
6u + 3
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
9
c
10
(y
2
+ y + 1)
2
c
6
, c
8
y
4
2y
3
+ 31y
2
30y + 9
c
7
, c
11
, c
12
(y + 2)
4
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.724745 + 0.158919I
a = 0.408248 + 1.284460I
b = 1.414210I
4.93480 0
u = 0.724745 0.158919I
a = 0.408248 1.284460I
b = 1.414210I
4.93480 0
u = 1.72474 + 1.57313I
a = 0.408248 0.129757I
b = 1.414210I
4.93480 0
u = 1.72474 1.57313I
a = 0.408248 + 0.129757I
b = 1.414210I
4.93480 0
19
V. I
u
5
= hb, a 1, u
2
u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u 1
a
11
=
1
0
a
12
=
1
0
a
3
=
u
u
a
2
=
u
u 1
a
5
=
1
0
a
1
=
1
0
a
7
=
1
0
a
6
=
u
u 1
a
10
=
u + 2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
8
, c
9
u
2
u + 1
c
2
, c
3
, c
5
c
10
u
2
+ u + 1
c
7
, c
11
, c
12
u
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
10
y
2
+ y + 1
c
7
, c
11
, c
12
y
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0
0 0
u = 0.500000 0.866025I
a = 1.00000
b = 0
0 0
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
24
+ 43u
23
+ ··· + 1172u + 81)
c
2
((u
2
+ u + 1)
6
)(u
24
3u
23
+ ··· 68u + 9)
c
3
((u
2
u + 1)
4
)(u
2
+ u + 1)
2
(u
24
+ 3u
23
+ ··· 4u + 3)
c
4
((u
2
u + 1)
6
)(u
24
3u
23
+ ··· 68u + 9)
c
5
((u
2
u + 1)
4
)(u
2
+ u + 1)
2
(u
24
3u
23
+ ··· + 10u + 3)
c
6
(u + 1)
2
(u
2
u + 1)(u
4
2u
3
+ u
2
+ 6u + 3)(u
4
+ 4u
3
+ 4u
2
+ 3)
· (u
24
+ 2u
23
+ ··· + 20857u + 9299)
c
7
, c
11
, c
12
u
4
(u
2
+ 2)
4
(u
24
+ u
23
+ ··· 32u + 16)
c
8
(u + 1)
2
(u
2
u + 1)(u
4
4u
3
+ 4u
2
+ 3)(u
4
+ 2u
3
+ u
2
6u + 3)
· (u
24
2u
23
+ ··· 4461u + 2683)
c
9
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
24
3u
23
+ ··· + 10u + 3)
c
10
((u
2
+ u + 1)
6
)(u
24
+ 19u
23
+ ··· + 68u + 9)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
24
117y
23
+ ··· 1128316y + 6561)
c
2
, c
4
((y
2
+ y + 1)
6
)(y
24
+ 43y
23
+ ··· + 1172y + 81)
c
3
((y
2
+ y + 1)
6
)(y
24
+ 3y
23
+ ··· + 68y + 9)
c
5
, c
9
((y
2
+ y + 1)
6
)(y
24
+ 19y
23
+ ··· + 68y + 9)
c
6
(y 1)
2
(y
2
+ y + 1)(y
4
8y
3
+ 22y
2
+ 24y + 9)
· (y
4
2y
3
+ 31y
2
30y + 9)
· (y
24
+ 82y
23
+ ··· + 1135326279y + 86471401)
c
7
, c
11
, c
12
y
4
(y + 2)
8
(y
24
+ 41y
23
+ ··· + 2048y + 256)
c
8
(y 1)
2
(y
2
+ y + 1)(y
4
8y
3
+ 22y
2
+ 24y + 9)
· (y
4
2y
3
+ 31y
2
30y + 9)
· (y
24
34y
23
+ ··· 21038113y + 7198489)
c
10
((y
2
+ y + 1)
6
)(y
24
21y
23
+ ··· + 5492y + 81)
25