12n
0152
(K12n
0152
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 12 11 4 5 6 7 10 9
Solving Sequence
6,11 3,7
4 10 12 5 2 9 1 8
c
6
c
3
c
10
c
11
c
5
c
2
c
9
c
12
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
42
u
41
+ ··· u
3
+ b, u
42
+ u
41
+ ··· + a 1, u
44
2u
43
+ ··· 2u + 1i
I
u
2
= hb + u, u
3
+ a u + 1, u
4
+ u
2
u + 1i
I
u
3
= h−u
5
u
4
2u
3
2u
2
+ b 2u 1, u
4
+ u
2
+ a, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
42
u
41
+· · ·u
3
+b, u
42
+u
41
+· · ·+a1, u
44
2u
43
+· · ·2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
42
u
41
+ ··· + 4u
3
+ 1
u
42
+ u
41
+ ··· 5u
4
+ u
3
a
7
=
1
u
2
a
4
=
u
43
+ 3u
42
+ ··· 2u + 2
u
43
3u
42
+ ··· u
2
+ u
a
10
=
u
u
3
+ u
a
12
=
u
3
u
5
+ u
3
+ u
a
5
=
u
8
+ u
6
+ u
4
+ 1
u
10
+ 2u
8
+ 3u
6
+ 2u
4
+ u
2
a
2
=
u
39
u
38
+ ··· + u + 1
u
41
u
40
+ ··· + u
3
+ u
2
a
9
=
u
3
u
3
+ u
a
1
=
u
11
2u
9
2u
7
+ u
3
u
11
+ 3u
9
+ 4u
7
+ 3u
5
+ u
3
+ u
a
8
=
u
21
+ 4u
19
+ 9u
17
+ 12u
15
+ 12u
13
+ 10u
11
+ 9u
9
+ 6u
7
+ 3u
5
+ u
u
23
+ 5u
21
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
43
8u
42
+ ··· + 11u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
44
+ 5u
43
+ ··· + 5u + 1
c
2
, c
4
u
44
11u
43
+ ··· 9u + 1
c
3
, c
7
u
44
u
43
+ ··· 2048u + 1024
c
5
u
44
+ 10u
43
+ ··· + 510u + 61
c
6
, c
10
u
44
+ 2u
43
+ ··· + 2u + 1
c
8
u
44
+ 2u
43
+ ··· 12568908u + 4045417
c
9
u
44
2u
43
+ ··· 48u + 72
c
11
u
44
22u
43
+ ··· 2u + 1
c
12
u
44
2u
43
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
44
+ 79y
43
+ ··· + 63y + 1
c
2
, c
4
y
44
5y
43
+ ··· 5y + 1
c
3
, c
7
y
44
63y
43
+ ··· 17301504y + 1048576
c
5
y
44
10y
43
+ ··· + 42582y + 3721
c
6
, c
10
y
44
+ 22y
43
+ ··· + 2y + 1
c
8
y
44
+ 118y
43
+ ··· + 59158715268238y + 16365398703889
c
9
y
44
18y
43
+ ··· 39312y + 5184
c
11
y
44
+ 2y
43
+ ··· + 22y + 1
c
12
y
44
+ 58y
43
+ ··· + 2y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.650835 + 0.753787I
a = 0.08846 1.78587I
b = 0.081004 + 0.538151I
7.53342 + 6.30806I 1.89413 5.29683I
u = 0.650835 0.753787I
a = 0.08846 + 1.78587I
b = 0.081004 0.538151I
7.53342 6.30806I 1.89413 + 5.29683I
u = 0.632673 + 0.802636I
a = 0.267451 + 1.071980I
b = 0.836036 0.256227I
7.68178 1.36168I 1.47660 0.85903I
u = 0.632673 0.802636I
a = 0.267451 1.071980I
b = 0.836036 + 0.256227I
7.68178 + 1.36168I 1.47660 + 0.85903I
u = 0.524889 + 0.986478I
a = 0.205755 0.498882I
b = 0.239518 + 0.643052I
0.15574 2.57093I 0.70156 + 2.32156I
u = 0.524889 0.986478I
a = 0.205755 + 0.498882I
b = 0.239518 0.643052I
0.15574 + 2.57093I 0.70156 2.32156I
u = 0.238245 + 1.098530I
a = 1.052800 0.393118I
b = 0.056688 + 0.785185I
4.15035 1.19914I 5.43856 + 1.99279I
u = 0.238245 1.098530I
a = 1.052800 + 0.393118I
b = 0.056688 0.785185I
4.15035 + 1.19914I 5.43856 1.99279I
u = 0.401111 + 1.053070I
a = 0.924275 0.254329I
b = 0.940261 + 0.336917I
1.12314 1.53132I 0.534904 + 0.918296I
u = 0.401111 1.053070I
a = 0.924275 + 0.254329I
b = 0.940261 0.336917I
1.12314 + 1.53132I 0.534904 0.918296I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.806426 + 0.270607I
a = 0.528240 1.204320I
b = 2.74166 + 0.03423I
10.03900 + 8.32938I 1.08270 4.13842I
u = 0.806426 0.270607I
a = 0.528240 + 1.204320I
b = 2.74166 0.03423I
10.03900 8.32938I 1.08270 + 4.13842I
u = 0.605593 + 0.584352I
a = 0.793404 + 0.445925I
b = 0.360026 0.418150I
1.33551 1.91461I 1.93635 + 4.43568I
u = 0.605593 0.584352I
a = 0.793404 0.445925I
b = 0.360026 + 0.418150I
1.33551 + 1.91461I 1.93635 4.43568I
u = 0.470021 + 1.059020I
a = 2.48227 + 1.10683I
b = 2.56335 + 1.29163I
0.51801 + 3.33956I 1.74785 5.30450I
u = 0.470021 1.059020I
a = 2.48227 1.10683I
b = 2.56335 1.29163I
0.51801 3.33956I 1.74785 + 5.30450I
u = 0.801520 + 0.234624I
a = 0.402454 + 0.655071I
b = 2.50289 + 0.41075I
10.56280 + 0.28731I 0.340463 + 0.065100I
u = 0.801520 0.234624I
a = 0.402454 0.655071I
b = 2.50289 0.41075I
10.56280 0.28731I 0.340463 0.065100I
u = 0.344708 + 1.132750I
a = 1.04475 1.24375I
b = 1.275840 0.094053I
5.34462 + 1.30032I 5.86228 1.34664I
u = 0.344708 1.132750I
a = 1.04475 + 1.24375I
b = 1.275840 + 0.094053I
5.34462 1.30032I 5.86228 + 1.34664I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.727737 + 0.345386I
a = 0.556447 + 0.549889I
b = 0.899472 + 0.608886I
0.21118 3.75271I 0.89242 + 4.60335I
u = 0.727737 0.345386I
a = 0.556447 0.549889I
b = 0.899472 0.608886I
0.21118 + 3.75271I 0.89242 4.60335I
u = 0.499458 + 1.093510I
a = 0.163389 0.118925I
b = 0.476367 0.549957I
0.35556 5.50410I 0.95894 + 5.50541I
u = 0.499458 1.093510I
a = 0.163389 + 0.118925I
b = 0.476367 + 0.549957I
0.35556 + 5.50410I 0.95894 5.50541I
u = 0.394783 + 0.687947I
a = 0.636590 0.714238I
b = 0.329853 + 0.582166I
0.07264 1.54976I 0.86288 + 5.32741I
u = 0.394783 0.687947I
a = 0.636590 + 0.714238I
b = 0.329853 0.582166I
0.07264 + 1.54976I 0.86288 5.32741I
u = 0.271461 + 1.191670I
a = 2.91510 0.51878I
b = 2.28357 1.65853I
14.6335 + 5.0175I 4.32906 1.77222I
u = 0.271461 1.191670I
a = 2.91510 + 0.51878I
b = 2.28357 + 1.65853I
14.6335 5.0175I 4.32906 + 1.77222I
u = 0.299244 + 1.194400I
a = 3.17931 + 0.29031I
b = 2.39631 + 1.63518I
14.9926 3.1935I 4.68937 + 2.57372I
u = 0.299244 1.194400I
a = 3.17931 0.29031I
b = 2.39631 1.63518I
14.9926 + 3.1935I 4.68937 2.57372I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.561031 + 1.111280I
a = 0.12864 + 1.49829I
b = 1.09429 1.16042I
2.02214 + 8.66027I 0. 8.67025I
u = 0.561031 1.111280I
a = 0.12864 1.49829I
b = 1.09429 + 1.16042I
2.02214 8.66027I 0. + 8.67025I
u = 0.514177 + 1.135410I
a = 2.03093 0.39666I
b = 1.75747 1.02929I
4.18522 + 6.56824I 3.58280 6.10314I
u = 0.514177 1.135410I
a = 2.03093 + 0.39666I
b = 1.75747 + 1.02929I
4.18522 6.56824I 3.58280 + 6.10314I
u = 0.690430 + 0.212080I
a = 0.519384 0.455199I
b = 1.075590 + 0.770658I
1.55771 1.98048I 0.55925 + 2.67881I
u = 0.690430 0.212080I
a = 0.519384 + 0.455199I
b = 1.075590 0.770658I
1.55771 + 1.98048I 0.55925 2.67881I
u = 0.559852 + 1.158950I
a = 2.47252 2.48487I
b = 3.85040 0.10977I
12.6669 13.4080I 0. + 7.64627I
u = 0.559852 1.158950I
a = 2.47252 + 2.48487I
b = 3.85040 + 0.10977I
12.6669 + 13.4080I 0. 7.64627I
u = 0.544747 + 1.166240I
a = 1.89623 + 2.56346I
b = 3.21064 0.17517I
13.3130 5.2801I 0
u = 0.544747 1.166240I
a = 1.89623 2.56346I
b = 3.21064 + 0.17517I
13.3130 + 5.2801I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.433758 + 0.454843I
a = 1.52940 + 1.29138I
b = 1.02671 0.97590I
2.34698 + 0.55015I 4.01438 + 2.82078I
u = 0.433758 0.454843I
a = 1.52940 1.29138I
b = 1.02671 + 0.97590I
2.34698 0.55015I 4.01438 2.82078I
u = 0.554531 + 0.293565I
a = 0.44996 + 1.43424I
b = 0.043378 0.204320I
1.89085 + 1.22646I 5.83511 0.82987I
u = 0.554531 0.293565I
a = 0.44996 1.43424I
b = 0.043378 + 0.204320I
1.89085 1.22646I 5.83511 + 0.82987I
9
II. I
u
2
= hb + u, u
3
+ a u + 1, u
4
+ u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
3
+ u 1
u
a
7
=
1
u
2
a
4
=
u
3
+ u 1
u
a
10
=
u
u
3
+ u
a
12
=
u
3
u
2
a
5
=
u
3
+ u
2
u + 1
u
2
+ u 1
a
2
=
2u
3
u
2
+ 2u 2
u
2
2u + 1
a
9
=
u
3
u
3
+ u
a
1
=
u
3
u
2
+ u 1
u
2
u + 1
a
8
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
+ 4u
2
+ u 6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
6
u
4
+ u
2
u + 1
c
8
, c
10
, c
12
u
4
+ u
2
+ u + 1
c
9
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
11
u
4
2u
3
+ 3u
2
u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
11
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
6
, c
8
, c
10
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
9
y
4
y
3
+ 2y
2
+ 7y + 4
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.851808 + 0.911292I
b = 0.547424 0.585652I
2.62503 1.39709I 7.62200 + 4.77865I
u = 0.547424 0.585652I
a = 0.851808 0.911292I
b = 0.547424 + 0.585652I
2.62503 + 1.39709I 7.62200 4.77865I
u = 0.547424 + 1.120870I
a = 0.351808 + 0.720342I
b = 0.547424 1.120870I
0.98010 + 7.64338I 0.87800 5.79053I
u = 0.547424 1.120870I
a = 0.351808 0.720342I
b = 0.547424 + 1.120870I
0.98010 7.64338I 0.87800 + 5.79053I
13
III. I
u
3
=
h−u
5
u
4
2u
3
2u
2
+b2u1, u
4
+u
2
+a, u
6
+u
5
+2u
4
+2u
3
+2u
2
+2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
4
u
2
u
5
+ u
4
+ 2u
3
+ 2u
2
+ 2u + 1
a
7
=
1
u
2
a
4
=
u
4
u
2
u
5
+ u
4
+ 2u
3
+ 2u
2
+ 2u + 1
a
10
=
u
u
3
+ u
a
12
=
u
3
u
5
+ u
3
+ u
a
5
=
u
4
+ u
2
+ u + 1
2u
5
u
4
3u
3
2u
2
3u 2
a
2
=
2u
4
2u
2
u 1
3u
5
+ 2u
4
+ 5u
3
+ 4u
2
+ 5u + 3
a
9
=
u
3
u
3
+ u
a
1
=
u
4
u
2
u 1
2u
5
+ u
4
+ 3u
3
+ 2u
2
+ 3u + 2
a
8
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
+ 5u
3
+ u
2
+ 4u 1
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
6
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
8
, c
10
, c
12
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
9
(u
3
u
2
+ 1)
2
c
11
u
6
3u
5
+ 4u
4
2u
3
+ 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
11
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
6
, c
8
, c
10
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
9
(y
3
y
2
+ 2y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 1.183530 + 0.507021I
b = 1.39861 + 0.80012I
1.37919 2.82812I 7.06955 + 2.21599I
u = 0.498832 1.001300I
a = 1.183530 0.507021I
b = 1.39861 0.80012I
1.37919 + 2.82812I 7.06955 2.21599I
u = 0.284920 + 1.115140I
a = 0.215080 0.841795I
b = 0.784920 + 0.841795I
2.75839 2.84423 0.27335I
u = 0.284920 1.115140I
a = 0.215080 + 0.841795I
b = 0.784920 0.841795I
2.75839 2.84423 + 0.27335I
u = 0.713912 + 0.305839I
a = 0.398606 + 0.800120I
b = 0.183526 + 0.507021I
1.37919 2.82812I 4.27468 + 2.61835I
u = 0.713912 0.305839I
a = 0.398606 0.800120I
b = 0.183526 0.507021I
1.37919 + 2.82812I 4.27468 2.61835I
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
44
+ 5u
43
+ ··· + 5u + 1)
c
2
((u 1)
10
)(u
44
11u
43
+ ··· 9u + 1)
c
3
, c
7
u
10
(u
44
u
43
+ ··· 2048u + 1024)
c
4
((u + 1)
10
)(u
44
11u
43
+ ··· 9u + 1)
c
5
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
44
+ 10u
43
+ ··· + 510u + 61)
c
6
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
44
+ 2u
43
+ ··· + 2u + 1)
c
8
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
44
+ 2u
43
+ ··· 12568908u + 4045417)
c
9
((u
3
u
2
+ 1)
2
)(u
4
+ 3u
3
+ ··· + 3u + 2)(u
44
2u
43
+ ··· 48u + 72)
c
10
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
44
+ 2u
43
+ ··· + 2u + 1)
c
11
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
44
22u
43
+ ··· 2u + 1)
c
12
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
44
2u
43
+ ··· 2u + 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
44
+ 79y
43
+ ··· + 63y + 1)
c
2
, c
4
((y 1)
10
)(y
44
5y
43
+ ··· 5y + 1)
c
3
, c
7
y
10
(y
44
63y
43
+ ··· 1.73015 × 10
7
y + 1048576)
c
5
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
44
10y
43
+ ··· + 42582y + 3721)
c
6
, c
10
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
44
+ 22y
43
+ ··· + 2y + 1)
c
8
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
44
+ 118y
43
+ ··· + 59158715268238y + 16365398703889)
c
9
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
44
18y
43
+ ··· 39312y + 5184)
c
11
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
44
+ 2y
43
+ ··· + 22y + 1)
c
12
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
44
+ 58y
43
+ ··· + 2y + 1)
19