12n
0153
(K12n
0153
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 9 11 3 5 6 12 7 10
Solving Sequence
6,11 3,7
8 4 12 10 1 9 5 2
c
6
c
7
c
3
c
11
c
10
c
12
c
9
c
5
c
2
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
13
u
12
+ 2u
11
+ 3u
10
2u
9
4u
8
+ 4u
6
+ 2u
5
2u
4
u
3
+ 2u
2
+ b + u 1,
2u
13
2u
12
+ 4u
11
+ 7u
10
4u
9
11u
8
u
7
+ 12u
6
+ 6u
5
6u
4
4u
3
+ 4u
2
+ a + 3u 1,
u
14
+ 2u
13
u
12
6u
11
2u
10
+ 8u
9
+ 7u
8
6u
7
10u
6
+ 6u
4
4u
2
u + 1i
I
u
2
= hu
7
u
5
+ 2u
3
+ b u + 1, u
7
u
5
+ u
4
+ 2u
3
u
2
+ a + 2, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 22 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
13
u
12
+· · ·+b1, 2u
13
2u
12
+· · ·+a1, u
14
+2u
13
+· · ·u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
2u
13
+ 2u
12
+ ··· 3u + 1
u
13
+ u
12
+ ··· u + 1
a
7
=
1
u
2
a
8
=
3u
13
4u
12
+ ··· + 5u 2
2u
13
4u
12
+ ··· + 4u 2
a
4
=
2u
13
4u
12
+ ··· + 3u 2
2u
13
+ u
12
+ ··· + 2u + 1
a
12
=
u
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
1
=
u
5
u
u
7
+ u
5
2u
3
+ u
a
9
=
u
5
+ u
u
5
u
3
+ u
a
5
=
u
10
+ u
8
2u
6
+ u
4
u
2
+ 1
u
10
+ 2u
8
3u
6
+ 2u
4
u
2
a
2
=
5u
13
+ 5u
12
+ ··· 6u + 3
u
13
+ u
12
2u
11
u
10
+ 2u
9
+ u
7
+ 2u
6
3u
5
2u
4
+ 3u
3
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
13
6u
12
+18u
11
+25u
10
24u
9
44u
8
+9u
7
+53u
6
+13u
5
35u
4
13u
3
+23u
2
+7u21
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 35u
13
+ ··· + 57u + 1
c
2
, c
4
u
14
9u
13
+ ··· + u 1
c
3
, c
7
u
14
7u
13
+ ··· 640u 256
c
5
, c
8
, c
9
u
14
+ 2u
13
+ ··· + 3u + 1
c
6
, c
11
u
14
2u
13
+ ··· + u + 1
c
10
, c
12
u
14
+ 6u
13
+ ··· + 9u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
215y
13
+ ··· 1173y + 1
c
2
, c
4
y
14
35y
13
+ ··· 57y + 1
c
3
, c
7
y
14
75y
13
+ ··· + 16384y + 65536
c
5
, c
8
, c
9
y
14
30y
13
+ ··· 9y + 1
c
6
, c
11
y
14
6y
13
+ ··· 9y + 1
c
10
, c
12
y
14
+ 6y
13
+ ··· 25y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.959410 + 0.328783I
a = 2.22180 + 0.56610I
b = 1.191800 + 0.163474I
3.28458 + 1.19495I 18.0412 3.1465I
u = 0.959410 0.328783I
a = 2.22180 0.56610I
b = 1.191800 0.163474I
3.28458 1.19495I 18.0412 + 3.1465I
u = 0.501889 + 0.920209I
a = 0.725724 + 0.027363I
b = 3.28288 0.17435I
18.7096 2.3664I 13.94239 + 0.06300I
u = 0.501889 0.920209I
a = 0.725724 0.027363I
b = 3.28288 + 0.17435I
18.7096 + 2.3664I 13.94239 0.06300I
u = 0.853744 + 0.641916I
a = 0.410449 0.466723I
b = 0.596688 0.171568I
1.83462 + 2.50408I 6.20303 3.70135I
u = 0.853744 0.641916I
a = 0.410449 + 0.466723I
b = 0.596688 + 0.171568I
1.83462 2.50408I 6.20303 + 3.70135I
u = 1.014210 + 0.562829I
a = 1.61553 1.07680I
b = 1.036730 + 0.627532I
1.62931 4.65799I 15.4888 + 5.2954I
u = 1.014210 0.562829I
a = 1.61553 + 1.07680I
b = 1.036730 0.627532I
1.62931 + 4.65799I 15.4888 5.2954I
u = 0.589347 + 0.525928I
a = 0.333608 + 0.150120I
b = 0.644384 0.529402I
0.335782 + 0.137583I 12.53131 0.75433I
u = 0.589347 0.525928I
a = 0.333608 0.150120I
b = 0.644384 + 0.529402I
0.335782 0.137583I 12.53131 + 0.75433I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.25934
a = 4.69391
b = 3.12501
12.1268 18.9430
u = 1.128420 + 0.686699I
a = 2.14185 + 3.38010I
b = 3.21915 + 0.28216I
16.7915 + 8.2751I 16.0152 4.1669I
u = 1.128420 0.686699I
a = 2.14185 3.38010I
b = 3.21915 0.28216I
16.7915 8.2751I 16.0152 + 4.1669I
u = 0.420479
a = 0.615608
b = 0.318491
0.632046 15.6130
6
II. I
u
2
= hu
7
u
5
+ 2u
3
+ b u + 1, u
7
u
5
+ u
4
+ 2u
3
u
2
+ a + 2, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
7
+ u
5
u
4
2u
3
+ u
2
2
u
7
+ u
5
2u
3
+ u 1
a
7
=
1
u
2
a
8
=
1
u
2
a
4
=
u
7
+ u
5
u
4
2u
3
+ u
2
2
u
7
+ u
5
2u
3
+ u 1
a
12
=
u
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
1
=
u
5
u
u
7
+ u
5
2u
3
+ u
a
9
=
u
5
+ u
u
5
u
3
+ u
a
5
=
u
5
+ u
u
7
u
5
+ 2u
3
u
a
2
=
u
7
u
4
2u
3
+ u
2
u 2
2u
7
+ 2u
5
4u
3
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
7
u
6
+ 5u
5
5u
3
+ u
2
+ 4u 17
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
6
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
8
, c
9
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
10
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
11
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
12
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
8
, c
9
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
6
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
10
, c
12
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.805639 0.183365I
b = 0.320534 0.633953I
2.68559 + 1.13123I 13.47926 0.84929I
u = 0.570868 0.730671I
a = 0.805639 + 0.183365I
b = 0.320534 + 0.633953I
2.68559 1.13123I 13.47926 + 0.84929I
u = 0.855237 + 0.665892I
a = 0.189481 1.310380I
b = 1.54709 0.16160I
0.51448 + 2.57849I 14.5054 3.2330I
u = 0.855237 0.665892I
a = 0.189481 + 1.310380I
b = 1.54709 + 0.16160I
0.51448 2.57849I 14.5054 + 3.2330I
u = 1.09818
a = 0.729394
b = 0.879647
8.14766 19.4520
u = 1.031810 + 0.655470I
a = 0.708845 0.169402I
b = 0.679246 + 0.851242I
4.02461 6.44354I 15.2754 + 5.9053I
u = 1.031810 0.655470I
a = 0.708845 + 0.169402I
b = 0.679246 0.851242I
4.02461 + 6.44354I 15.2754 5.9053I
u = 0.603304
a = 2.15684
b = 0.785038
2.48997 15.0280
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
14
+ 35u
13
+ ··· + 57u + 1)
c
2
((u 1)
8
)(u
14
9u
13
+ ··· + u 1)
c
3
, c
7
u
8
(u
14
7u
13
+ ··· 640u 256)
c
4
((u + 1)
8
)(u
14
9u
13
+ ··· + u 1)
c
5
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
14
+ 2u
13
+ ··· + 3u + 1)
c
6
(u
8
u
7
+ ··· + 2u 1)(u
14
2u
13
+ ··· + u + 1)
c
8
, c
9
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)(u
14
+ 2u
13
+ ··· + 3u + 1)
c
10
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
14
+ 6u
13
+ ··· + 9u + 1)
c
11
(u
8
+ u
7
+ ··· 2u 1)(u
14
2u
13
+ ··· + u + 1)
c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
14
+ 6u
13
+ ··· + 9u + 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
14
215y
13
+ ··· 1173y + 1)
c
2
, c
4
((y 1)
8
)(y
14
35y
13
+ ··· 57y + 1)
c
3
, c
7
y
8
(y
14
75y
13
+ ··· + 16384y + 65536)
c
5
, c
8
, c
9
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
14
30y
13
+ ··· 9y + 1)
c
6
, c
11
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
14
6y
13
+ ··· 9y + 1)
c
10
, c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
14
+ 6y
13
+ ··· 25y + 1)
12