12n
0155
(K12n
0155
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 11 4 5 6 12 7 10
Solving Sequence
6,11 3,7
4 12 10 1 9 5 2 8
c
6
c
3
c
11
c
10
c
12
c
9
c
5
c
2
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
51
u
50
+ ··· + b 1, 2u
51
2u
50
+ ··· + a 3, u
52
+ 2u
51
+ ··· + 2u + 1i
I
u
2
= hu
7
u
5
+ 2u
3
+ b u + 1, u
7
u
5
+ u
4
+ 2u
3
u
2
+ a + 2, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
51
u
50
+· · ·+b1, 2u
51
2u
50
+· · ·+a3, u
52
+2u
51
+· · ·+2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
2u
51
+ 2u
50
+ ··· 3u + 3
u
51
+ u
50
+ ··· 2u
2
+ 1
a
7
=
1
u
2
a
4
=
u
51
8u
49
+ ··· 5u + 2
2u
51
+ u
50
+ ··· + u + 1
a
12
=
u
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
1
=
u
5
u
u
7
+ u
5
2u
3
+ u
a
9
=
u
5
+ u
u
5
u
3
+ u
a
5
=
u
10
+ u
8
2u
6
+ u
4
u
2
+ 1
u
10
+ 2u
8
3u
6
+ 2u
4
u
2
a
2
=
u
51
+ u
50
+ ··· 4u + 3
u
51
+ u
50
+ ··· + u + 1
a
8
=
u
15
+ 2u
13
4u
11
+ 4u
9
4u
7
+ 4u
5
2u
3
+ 2u
u
15
+ 3u
13
6u
11
+ 7u
9
6u
7
+ 4u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
51
+ 2u
50
+ ··· 14u 3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
52
+ 15u
51
+ ··· + 34u + 1
c
2
, c
4
u
52
9u
51
+ ··· 10u + 1
c
3
, c
7
u
52
u
51
+ ··· + 640u + 256
c
5
, c
8
, c
9
u
52
+ 2u
51
+ ··· + 336u + 49
c
6
, c
11
u
52
2u
51
+ ··· 2u + 1
c
10
, c
12
u
52
+ 18u
51
+ ··· + 14u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
52
+ 53y
51
+ ··· 706y + 1
c
2
, c
4
y
52
15y
51
+ ··· 34y + 1
c
3
, c
7
y
52
51y
51
+ ··· 1622016y + 65536
c
5
, c
8
, c
9
y
52
26y
51
+ ··· 65170y + 2401
c
6
, c
11
y
52
18y
51
+ ··· 14y + 1
c
10
, c
12
y
52
+ 34y
51
+ ··· 14y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.661298 + 0.748302I
a = 0.320274 + 0.754666I
b = 0.79199 1.48215I
0.80822 + 2.47111I 6.26058 3.26854I
u = 0.661298 0.748302I
a = 0.320274 0.754666I
b = 0.79199 + 1.48215I
0.80822 2.47111I 6.26058 + 3.26854I
u = 0.636633 + 0.816820I
a = 0.268660 + 0.935747I
b = 2.46939 1.06759I
6.10406 8.66203I 5.62163 + 4.32258I
u = 0.636633 0.816820I
a = 0.268660 0.935747I
b = 2.46939 + 1.06759I
6.10406 + 8.66203I 5.62163 4.32258I
u = 1.036160 + 0.045183I
a = 0.56922 2.81424I
b = 0.23556 2.03154I
4.76535 + 2.18839I 14.6770 3.6633I
u = 1.036160 0.045183I
a = 0.56922 + 2.81424I
b = 0.23556 + 2.03154I
4.76535 2.18839I 14.6770 + 3.6633I
u = 0.723846 + 0.632329I
a = 0.194221 1.378370I
b = 1.63877 + 0.76596I
0.43554 1.57909I 9.64188 + 1.77235I
u = 0.723846 0.632329I
a = 0.194221 + 1.378370I
b = 1.63877 0.76596I
0.43554 + 1.57909I 9.64188 1.77235I
u = 1.04031
a = 0.375292
b = 0.518107
6.36986 13.6620
u = 0.657608 + 0.692008I
a = 1.36055 0.47884I
b = 0.330991 0.978148I
1.297150 0.510740I 6.51784 0.83295I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.657608 0.692008I
a = 1.36055 + 0.47884I
b = 0.330991 + 0.978148I
1.297150 + 0.510740I 6.51784 + 0.83295I
u = 0.666205 + 0.808385I
a = 0.331437 0.469968I
b = 2.08963 + 0.58134I
7.27982 1.78274I 3.98925 0.13082I
u = 0.666205 0.808385I
a = 0.331437 + 0.469968I
b = 2.08963 0.58134I
7.27982 + 1.78274I 3.98925 + 0.13082I
u = 0.806239 + 0.701530I
a = 0.587597 + 0.348457I
b = 0.210379 + 0.054742I
2.80086 + 2.09505I 2.50659 3.48544I
u = 0.806239 0.701530I
a = 0.587597 0.348457I
b = 0.210379 0.054742I
2.80086 2.09505I 2.50659 + 3.48544I
u = 1.063220 + 0.121546I
a = 2.29627 + 1.25450I
b = 1.38281 + 0.68102I
0.93793 1.58244I 10.84568 + 1.37730I
u = 1.063220 0.121546I
a = 2.29627 1.25450I
b = 1.38281 0.68102I
0.93793 + 1.58244I 10.84568 1.37730I
u = 0.549487 + 0.745372I
a = 0.521065 0.048868I
b = 0.799139 0.412000I
1.81149 + 1.27627I 3.31406 1.04966I
u = 0.549487 0.745372I
a = 0.521065 + 0.048868I
b = 0.799139 + 0.412000I
1.81149 1.27627I 3.31406 + 1.04966I
u = 0.973478 + 0.497457I
a = 1.35010 1.41893I
b = 0.920949 + 0.416007I
3.12207 + 4.60453I 8.72425 5.65975I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.973478 0.497457I
a = 1.35010 + 1.41893I
b = 0.920949 0.416007I
3.12207 4.60453I 8.72425 + 5.65975I
u = 1.099660 + 0.097397I
a = 2.11231 2.23460I
b = 1.53001 1.70626I
0.24824 8.05886I 12.40052 + 5.70179I
u = 1.099660 0.097397I
a = 2.11231 + 2.23460I
b = 1.53001 + 1.70626I
0.24824 + 8.05886I 12.40052 5.70179I
u = 1.11145
a = 1.48524
b = 1.21896
7.36266 8.96100
u = 0.905213 + 0.681246I
a = 0.523152 0.438777I
b = 0.1179880 0.0609129I
2.49405 + 3.22105I 3.32606 3.39208I
u = 0.905213 0.681246I
a = 0.523152 + 0.438777I
b = 0.1179880 + 0.0609129I
2.49405 3.22105I 3.32606 + 3.39208I
u = 0.856090 + 0.776847I
a = 0.786022 0.932466I
b = 0.57351 1.38717I
10.43740 + 0.66966I 3.01264 + 0.I
u = 0.856090 0.776847I
a = 0.786022 + 0.932466I
b = 0.57351 + 1.38717I
10.43740 0.66966I 3.01264 + 0.I
u = 1.015300 + 0.553492I
a = 1.73668 + 0.33530I
b = 0.221364 1.300870I
2.49928 1.45715I 9.46738 + 0.I
u = 1.015300 0.553492I
a = 1.73668 0.33530I
b = 0.221364 + 1.300870I
2.49928 + 1.45715I 9.46738 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.972910 + 0.643628I
a = 1.12101 2.08154I
b = 1.67842 1.59230I
1.23183 3.44766I 10.73445 + 3.25709I
u = 0.972910 0.643628I
a = 1.12101 + 2.08154I
b = 1.67842 + 1.59230I
1.23183 + 3.44766I 10.73445 3.25709I
u = 0.884417 + 0.769320I
a = 1.04291 + 1.44163I
b = 0.05794 + 1.42188I
10.35090 6.48169I 3.29234 + 5.33033I
u = 0.884417 0.769320I
a = 1.04291 1.44163I
b = 0.05794 1.42188I
10.35090 + 6.48169I 3.29234 5.33033I
u = 0.995994 + 0.663488I
a = 0.447793 + 0.743729I
b = 0.197171 + 1.217400I
2.30244 + 5.77043I 8.73703 4.68081I
u = 0.995994 0.663488I
a = 0.447793 0.743729I
b = 0.197171 1.217400I
2.30244 5.77043I 8.73703 + 4.68081I
u = 1.005230 + 0.684675I
a = 1.66351 + 1.36728I
b = 0.93378 + 1.89685I
0.22005 7.93959I 8.35668 + 7.99048I
u = 1.005230 0.684675I
a = 1.66351 1.36728I
b = 0.93378 1.89685I
0.22005 + 7.93959I 8.35668 7.99048I
u = 1.040490 + 0.652647I
a = 0.837700 0.810359I
b = 1.025560 + 0.617772I
3.23709 6.60394I 0
u = 1.040490 0.652647I
a = 0.837700 + 0.810359I
b = 1.025560 0.617772I
3.23709 + 6.60394I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.020440 + 0.711207I
a = 0.20228 2.51624I
b = 2.10957 0.88029I
6.20768 + 7.49853I 0
u = 1.020440 0.711207I
a = 0.20228 + 2.51624I
b = 2.10957 + 0.88029I
6.20768 7.49853I 0
u = 1.036210 + 0.704214I
a = 0.19781 + 3.00542I
b = 2.71533 + 1.45235I
4.8974 + 14.3736I 0
u = 1.036210 0.704214I
a = 0.19781 3.00542I
b = 2.71533 1.45235I
4.8974 14.3736I 0
u = 0.316269 + 0.673477I
a = 0.152937 1.157570I
b = 0.964431 + 0.772467I
4.38303 + 5.94973I 5.70519 4.98093I
u = 0.316269 0.673477I
a = 0.152937 + 1.157570I
b = 0.964431 0.772467I
4.38303 5.94973I 5.70519 + 4.98093I
u = 0.702232
a = 0.797304
b = 0.0429664
1.05113 9.14920
u = 0.237887 + 0.635480I
a = 0.196476 + 0.636369I
b = 1.285860 0.135549I
5.12115 0.59863I 4.16704 0.03207I
u = 0.237887 0.635480I
a = 0.196476 0.636369I
b = 1.285860 + 0.135549I
5.12115 + 0.59863I 4.16704 + 0.03207I
u = 0.311034 + 0.368798I
a = 0.691540 1.071180I
b = 0.258704 + 0.649617I
0.684234 1.109730I 7.41214 + 5.86160I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.311034 0.368798I
a = 0.691540 + 1.071180I
b = 0.258704 0.649617I
0.684234 + 1.109730I 7.41214 5.86160I
u = 0.359182
a = 3.20503
b = 0.863998
2.10063 0.990710
10
II. I
u
2
= hu
7
u
5
+ 2u
3
+ b u + 1, u
7
u
5
+ u
4
+ 2u
3
u
2
+ a + 2, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
7
+ u
5
u
4
2u
3
+ u
2
2
u
7
+ u
5
2u
3
+ u 1
a
7
=
1
u
2
a
4
=
u
7
+ u
5
u
4
2u
3
+ u
2
2
u
7
+ u
5
2u
3
+ u 1
a
12
=
u
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
1
=
u
5
u
u
7
+ u
5
2u
3
+ u
a
9
=
u
5
+ u
u
5
u
3
+ u
a
5
=
u
5
+ u
u
7
u
5
+ 2u
3
u
a
2
=
u
7
u
4
2u
3
+ u
2
u 2
2u
7
+ 2u
5
4u
3
+ 2u 1
a
8
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
7
+ u
6
+ 11u
5
8u
4
11u
3
+ 7u
2
+ 4u 23
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
6
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
8
, c
9
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
10
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
11
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
12
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
8
, c
9
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
6
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
10
, c
12
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.805639 0.183365I
b = 0.320534 0.633953I
2.68559 + 1.13123I 13.35119 0.17229I
u = 0.570868 0.730671I
a = 0.805639 + 0.183365I
b = 0.320534 + 0.633953I
2.68559 1.13123I 13.35119 + 0.17229I
u = 0.855237 + 0.665892I
a = 0.189481 1.310380I
b = 1.54709 0.16160I
0.51448 + 2.57849I 6.04880 3.90294I
u = 0.855237 0.665892I
a = 0.189481 + 1.310380I
b = 1.54709 + 0.16160I
0.51448 2.57849I 6.04880 + 3.90294I
u = 1.09818
a = 0.729394
b = 0.879647
8.14766 20.2760
u = 1.031810 + 0.655470I
a = 0.708845 0.169402I
b = 0.679246 + 0.851242I
4.02461 6.44354I 15.5815 + 4.6831I
u = 1.031810 0.655470I
a = 0.708845 + 0.169402I
b = 0.679246 0.851242I
4.02461 + 6.44354I 15.5815 4.6831I
u = 0.603304
a = 2.15684
b = 0.785038
2.48997 20.7610
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
52
+ 15u
51
+ ··· + 34u + 1)
c
2
((u 1)
8
)(u
52
9u
51
+ ··· 10u + 1)
c
3
, c
7
u
8
(u
52
u
51
+ ··· + 640u + 256)
c
4
((u + 1)
8
)(u
52
9u
51
+ ··· 10u + 1)
c
5
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
52
+ 2u
51
+ ··· + 336u + 49)
c
6
(u
8
u
7
+ ··· + 2u 1)(u
52
2u
51
+ ··· 2u + 1)
c
8
, c
9
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)(u
52
+ 2u
51
+ ··· + 336u + 49)
c
10
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
52
+ 18u
51
+ ··· + 14u + 1)
c
11
(u
8
+ u
7
+ ··· 2u 1)(u
52
2u
51
+ ··· 2u + 1)
c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
52
+ 18u
51
+ ··· + 14u + 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
52
+ 53y
51
+ ··· 706y + 1)
c
2
, c
4
((y 1)
8
)(y
52
15y
51
+ ··· 34y + 1)
c
3
, c
7
y
8
(y
52
51y
51
+ ··· 1622016y + 65536)
c
5
, c
8
, c
9
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
52
26y
51
+ ··· 65170y + 2401)
c
6
, c
11
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
52
18y
51
+ ··· 14y + 1)
c
10
, c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
52
+ 34y
51
+ ··· 14y + 1)
16