12n
0156
(K12n
0156
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 12 3 5 6 9 7 11
Solving Sequence
5,10 3,6
2 1 4 9 11 8 7 12
c
5
c
2
c
1
c
4
c
9
c
10
c
8
c
7
c
12
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
9
+ u
8
+ 5u
7
+ 3u
6
+ 9u
5
+ 7u
4
+ 6u
3
+ 5u
2
+ 4b + 3,
u
9
+ 3u
8
5u
7
+ 5u
6
5u
5
+ u
4
+ 2u
3
13u
2
+ 8a + 8u 11,
u
10
+ 4u
8
+ 2u
7
+ 6u
6
+ 6u
5
+ 3u
4
+ 7u
3
u
2
+ 3u + 1i
I
u
2
= hb + 1, u
3
+ u
2
+ 2a + 1, u
4
+ u
2
+ u + 1i
I
u
3
= h−4u
15
+ 18u
14
+ ··· + 33b + 38, 29u
15
48u
14
+ ··· + 33a 61, u
16
2u
15
+ ··· 2u + 1i
I
u
4
= hb + 1, u
5
u
4
+ u
3
u
2
+ a + u, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
* 4 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
9
+u
8
+· · · +4b + 3, u
9
+3u
8
+· · · +8a 11, u
10
+4u
8
+· · · +3u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
1
8
u
9
3
8
u
8
+ ··· u +
11
8
1
4
u
9
1
4
u
8
+ ···
5
4
u
2
3
4
a
6
=
1
u
2
a
2
=
1
8
u
9
5
8
u
8
+ ··· u +
5
8
1
4
u
9
1
4
u
8
+ ···
5
4
u
2
3
4
a
1
=
u
9
3u
7
2u
6
4u
5
4u
4
3u
2
u
9
2u
7
2u
6
2u
5
4u
4
+ 2u
3
3u
2
a
4
=
13
8
u
9
7
8
u
8
+ ··· 2u +
7
8
3
4
u
9
1
4
u
8
+ ··· +
3
4
u
2
3
4
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
u
8
+ 3u
6
+ 2u
5
+ 3u
4
+ 4u
3
u
2
+ 3u
u
8
+ 3u
6
+ 2u
5
+ 4u
4
+ 4u
3
+ 3u + 1
a
12
=
u
9
3u
7
2u
6
3u
5
4u
4
3u
2
u
9
3u
7
2u
6
3u
5
4u
4
+ u
3
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
33
16
u
9
53
16
u
8
141
16
u
7
227
16
u
6
325
16
u
5
367
16
u
4
159
8
u
3
237
16
u
2
6u
147
16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 17u
9
+ ··· + 353u + 16
c
2
, c
4
u
10
3u
9
4u
8
+ 13u
7
+ 22u
6
70u
5
+ 56u
4
7u
3
47u
2
+ 27u 4
c
3
, c
7
u
10
3u
9
+ ··· 48u 64
c
5
, c
6
, c
9
c
11
u
10
+ 4u
8
+ 2u
7
+ 6u
6
+ 6u
5
+ 3u
4
+ 7u
3
u
2
+ 3u + 1
c
8
u
10
+ 6u
9
+ 9u
8
6u
7
21u
6
14u
5
+ 21u
3
+ 13u
2
+ 16u + 4
c
10
, c
12
u
10
+ 8u
9
+ ··· 11u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
13y
9
+ ··· 56161y + 256
c
2
, c
4
y
10
17y
9
+ ··· 353y + 16
c
3
, c
7
y
10
21y
9
+ ··· + 16128y + 4096
c
5
, c
6
, c
9
c
11
y
10
+ 8y
9
+ ··· 11y + 1
c
8
y
10
18y
9
+ ··· 152y + 16
c
10
, c
12
y
10
8y
9
+ ··· 191y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.10322
a = 0.0897722
b = 2.01806
13.1809 5.01890
u = 0.434341 + 1.157890I
a = 0.168075 0.547483I
b = 0.424180 0.920028I
3.22150 6.17796I 7.18871 + 5.57381I
u = 0.434341 1.157890I
a = 0.168075 + 0.547483I
b = 0.424180 + 0.920028I
3.22150 + 6.17796I 7.18871 5.57381I
u = 0.453609 + 0.609493I
a = 0.755807 + 0.185749I
b = 0.306434 0.019942I
0.54459 + 1.46281I 2.01320 4.52195I
u = 0.453609 0.609493I
a = 0.755807 0.185749I
b = 0.306434 + 0.019942I
0.54459 1.46281I 2.01320 + 4.52195I
u = 0.126773 + 1.317690I
a = 1.87389 + 0.33187I
b = 1.95902 + 1.19918I
9.42139 + 3.00890I 13.74651 2.98751I
u = 0.126773 1.317690I
a = 1.87389 0.33187I
b = 1.95902 1.19918I
9.42139 3.00890I 13.74651 + 2.98751I
u = 0.53944 + 1.37745I
a = 1.77401 + 1.11600I
b = 2.12782 0.47355I
17.6402 + 11.6714I 10.01565 5.34252I
u = 0.53944 1.37745I
a = 1.77401 1.11600I
b = 2.12782 + 0.47355I
17.6402 11.6714I 10.01565 + 5.34252I
u = 0.267745
a = 1.76223
b = 0.816874
1.19281 8.35580
5
II. I
u
2
= hb + 1, u
3
+ u
2
+ 2a + 1, u
4
+ u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
1
2
u
3
1
2
u
2
1
2
1
a
6
=
1
u
2
a
2
=
1
2
u
3
1
2
u
2
3
2
1
a
1
=
1
0
a
4
=
1
2
u
3
1
2
u
2
1
2
1
a
9
=
u
u
3
+ u
a
11
=
u
3
u
2
a
8
=
u
3
u
3
+ u
a
7
=
u
3
u
3
+ u
a
12
=
u
3
u
2
u 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
4
u
3
21
4
u
2
1
2
u
31
4
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
u
4
+ u
2
+ u + 1
c
8
u
4
3u
3
+ 4u
2
3u + 2
c
9
, c
11
u
4
+ u
2
u + 1
c
10
, c
12
u
4
+ 2u
3
+ 3u
2
+ u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
9
c
11
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
8
y
4
y
3
+ 2y
2
+ 7y + 4
c
10
, c
12
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.278726 + 0.483420I
b = 1.00000
0.66484 1.39709I 6.15099 + 3.96898I
u = 0.547424 0.585652I
a = 0.278726 0.483420I
b = 1.00000
0.66484 + 1.39709I 6.15099 3.96898I
u = 0.547424 + 1.120870I
a = 0.971274 0.813859I
b = 1.00000
4.26996 + 7.64338I 8.22401 8.10462I
u = 0.547424 1.120870I
a = 0.971274 + 0.813859I
b = 1.00000
4.26996 7.64338I 8.22401 + 8.10462I
9
III. I
u
3
= h−4u
15
+ 18u
14
+ · · · + 33b + 38, 29u
15
48u
14
+ · · · + 33a
61, u
16
2u
15
+ · · · 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
0.878788u
15
+ 1.45455u
14
+ ··· 0.636364u + 1.84848
0.121212u
15
0.545455u
14
+ ··· + 0.363636u 1.15152
a
6
=
1
u
2
a
2
=
0.757576u
15
+ 0.909091u
14
+ ··· 0.272727u + 0.696970
0.121212u
15
0.545455u
14
+ ··· + 0.363636u 1.15152
a
1
=
1.27273u
15
2.72727u
14
+ ··· + 3.81818u 2.09091
1.78788u
15
1.54545u
14
+ ··· + 0.363636u 1.48485
a
4
=
0.393939u
15
+ 1.27273u
14
+ ··· 0.181818u + 1.24242
1.36364u
15
1.63636u
14
+ ··· + 2.09091u 2.45455
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
0.0909091u
15
0.0909091u
14
+ ··· + 2.72727u + 1.36364
1.21212u
15
1.45455u
14
+ ··· + 1.63636u 2.51515
a
12
=
2.24242u
15
3.09091u
14
+ ··· + 4.72727u 3.30303
2.75758u
15
+ 2.90909u
14
+ ··· 3.27273u + 2.69697
(ii) Obstruction class = 1
(iii) Cusp Shapes =
19
11
u
15
+
25
11
u
14
135
11
u
13
+
153
11
u
12
410
11
u
11
+
412
11
u
10
603
11
u
9
+
543
11
u
8
29u
7
+
303
11
u
6
+
127
11
u
5
+
60
11
u
4
+
67
11
u
3
+
56
11
u
2
90
11
u
34
11
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 16u
7
+ 98u
6
+ 283u
5
+ 381u
4
+ 191u
3
45u
2
+ 10u + 1)
2
c
2
, c
4
(u
8
4u
7
+ 13u
5
3u
4
15u
3
+ 3u
2
2u 1)
2
c
3
, c
7
(u
8
+ u
7
10u
6
7u
5
+ 19u
4
23u
3
12u + 8)
2
c
5
, c
6
, c
9
c
11
u
16
2u
15
+ ··· 2u + 1
c
8
(u
8
2u
7
7u
6
+ 12u
5
+ 7u
4
2u
3
2u
2
+ 3u 1)
2
c
10
, c
12
u
16
+ 10u
15
+ ··· + 14u
2
+ 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
8
60y
7
+ ··· 190y + 1)
2
c
2
, c
4
(y
8
16y
7
+ 98y
6
283y
5
+ 381y
4
191y
3
45y
2
10y + 1)
2
c
3
, c
7
(y
8
21y
7
+ 152y
6
383y
5
+ 79y
4
857y
3
248y
2
144y + 64)
2
c
5
, c
6
, c
9
c
11
y
16
+ 10y
15
+ ··· + 14y
2
+ 1
c
8
(y
8
18y
7
+ 111y
6
254y
5
+ 135y
4
90y
3
+ 2y
2
5y + 1)
2
c
10
, c
12
y
16
10y
15
+ ··· + 28y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.381176 + 0.988501I
a = 0.400335 + 0.134981I
b = 0.202560 + 0.429200I
0.54882 + 2.12062I 1.41411 2.85603I
u = 0.381176 0.988501I
a = 0.400335 0.134981I
b = 0.202560 0.429200I
0.54882 2.12062I 1.41411 + 2.85603I
u = 0.175038 + 1.044950I
a = 0.881139 + 0.709579I
b = 0.266855
3.96569 10.71257 + 0.I
u = 0.175038 1.044950I
a = 0.881139 0.709579I
b = 0.266855
3.96569 10.71257 + 0.I
u = 1.097050 + 0.006514I
a = 0.0528548 + 0.1140410I
b = 2.08865 0.23775I
17.5075 + 5.8605I 7.51154 2.72065I
u = 1.097050 0.006514I
a = 0.0528548 0.1140410I
b = 2.08865 + 0.23775I
17.5075 5.8605I 7.51154 + 2.72065I
u = 0.087856 + 1.180370I
a = 1.94399 + 0.56029I
b = 1.251300 0.394571I
4.42998 1.32248I 7.15537 + 1.48485I
u = 0.087856 1.180370I
a = 1.94399 0.56029I
b = 1.251300 + 0.394571I
4.42998 + 1.32248I 7.15537 1.48485I
u = 0.579676 + 0.232048I
a = 0.915955 0.352378I
b = 0.202560 + 0.429200I
0.54882 + 2.12062I 1.41411 2.85603I
u = 0.579676 0.232048I
a = 0.915955 + 0.352378I
b = 0.202560 0.429200I
0.54882 2.12062I 1.41411 + 2.85603I
13
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.54916 + 1.38012I
a = 1.49564 + 1.24562I
b = 2.18705
17.6846 10.12539 + 0.I
u = 0.54916 1.38012I
a = 1.49564 1.24562I
b = 2.18705
17.6846 10.12539 + 0.I
u = 0.54464 + 1.38261I
a = 1.62067 1.13338I
b = 2.08865 + 0.23775I
17.5075 5.8605I 7.51154 + 2.72065I
u = 0.54464 1.38261I
a = 1.62067 + 1.13338I
b = 2.08865 0.23775I
17.5075 + 5.8605I 7.51154 2.72065I
u = 0.359826 + 0.343977I
a = 2.07740 0.65398I
b = 1.251300 + 0.394571I
4.42998 + 1.32248I 7.15537 1.48485I
u = 0.359826 0.343977I
a = 2.07740 + 0.65398I
b = 1.251300 0.394571I
4.42998 1.32248I 7.15537 + 1.48485I
14
IV.
I
u
4
= hb + 1, u
5
u
4
+ u
3
u
2
+ a + u, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
u
5
+ u
4
u
3
+ u
2
u
1
a
6
=
1
u
2
a
2
=
u
5
+ u
4
u
3
+ u
2
u 1
1
a
1
=
1
0
a
4
=
u
5
+ u
4
u
3
+ u
2
u
1
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
u
3
u
3
+ u
a
12
=
u
4
u
2
+ u 1
2u
5
u
4
+ 3u
3
2u
2
+ 3u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
+ 5u
3
u
2
+ 5u 10
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
6
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
8
(u
3
+ u
2
1)
2
c
9
, c
11
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
10
, c
12
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
6
, c
9
c
11
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
8
(y
3
y
2
+ 2y 1)
2
c
10
, c
12
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.767394 + 0.943705I
b = 1.00000
1.91067 2.82812I 6.15260 + 3.54173I
u = 0.498832 1.001300I
a = 0.767394 0.943705I
b = 1.00000
1.91067 + 2.82812I 6.15260 3.54173I
u = 0.284920 + 1.115140I
a = 1.37744 1.47725I
b = 1.00000
6.04826 10.69479 + 0.I
u = 0.284920 1.115140I
a = 1.37744 + 1.47725I
b = 1.00000
6.04826 10.69479 + 0.I
u = 0.713912 + 0.305839I
a = 0.355167 0.198843I
b = 1.00000
1.91067 2.82812I 6.15260 + 3.54173I
u = 0.713912 0.305839I
a = 0.355167 + 0.198843I
b = 1.00000
1.91067 + 2.82812I 6.15260 3.54173I
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
· (u
8
+ 16u
7
+ 98u
6
+ 283u
5
+ 381u
4
+ 191u
3
45u
2
+ 10u + 1)
2
· (u
10
+ 17u
9
+ ··· + 353u + 16)
c
2
(u 1)
10
(u
8
4u
7
+ 13u
5
3u
4
15u
3
+ 3u
2
2u 1)
2
· (u
10
3u
9
4u
8
+ 13u
7
+ 22u
6
70u
5
+ 56u
4
7u
3
47u
2
+ 27u 4)
c
3
, c
7
u
10
(u
8
+ u
7
10u
6
7u
5
+ 19u
4
23u
3
12u + 8)
2
· (u
10
3u
9
+ ··· 48u 64)
c
4
(u + 1)
10
(u
8
4u
7
+ 13u
5
3u
4
15u
3
+ 3u
2
2u 1)
2
· (u
10
3u
9
4u
8
+ 13u
7
+ 22u
6
70u
5
+ 56u
4
7u
3
47u
2
+ 27u 4)
c
5
, c
6
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
10
+ 4u
8
+ 2u
7
+ 6u
6
+ 6u
5
+ 3u
4
+ 7u
3
u
2
+ 3u + 1)
· (u
16
2u
15
+ ··· 2u + 1)
c
8
(u
3
+ u
2
1)
2
(u
4
3u
3
+ 4u
2
3u + 2)
· (u
8
2u
7
7u
6
+ 12u
5
+ 7u
4
2u
3
2u
2
+ 3u 1)
2
· (u
10
+ 6u
9
+ 9u
8
6u
7
21u
6
14u
5
+ 21u
3
+ 13u
2
+ 16u + 4)
c
9
, c
11
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
10
+ 4u
8
+ 2u
7
+ 6u
6
+ 6u
5
+ 3u
4
+ 7u
3
u
2
+ 3u + 1)
· (u
16
2u
15
+ ··· 2u + 1)
c
10
, c
12
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
10
+ 8u
9
+ ··· 11u + 1)(u
16
+ 10u
15
+ ··· + 14u
2
+ 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
8
60y
7
+ ··· 190y + 1)
2
· (y
10
13y
9
+ ··· 56161y + 256)
c
2
, c
4
(y 1)
10
· (y
8
16y
7
+ 98y
6
283y
5
+ 381y
4
191y
3
45y
2
10y + 1)
2
· (y
10
17y
9
+ ··· 353y + 16)
c
3
, c
7
y
10
· (y
8
21y
7
+ 152y
6
383y
5
+ 79y
4
857y
3
248y
2
144y + 64)
2
· (y
10
21y
9
+ ··· + 16128y + 4096)
c
5
, c
6
, c
9
c
11
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
10
+ 8y
9
+ ··· 11y + 1)(y
16
+ 10y
15
+ ··· + 14y
2
+ 1)
c
8
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
8
18y
7
+ 111y
6
254y
5
+ 135y
4
90y
3
+ 2y
2
5y + 1)
2
· (y
10
18y
9
+ ··· 152y + 16)
c
10
, c
12
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
10
8y
9
+ ··· 191y + 1)(y
16
10y
15
+ ··· + 28y + 1)
20