12n
0158
(K12n
0158
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 12 4 5 6 9 7 11
Solving Sequence
5,10 3,6
2 1 4 9 11 8 7 12
c
5
c
2
c
1
c
4
c
9
c
10
c
8
c
7
c
12
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h37u
25
+ 5u
24
+ ··· + 32b + 3, 11u
25
u
24
+ ··· + 64a + 73, u
26
+ 5u
24
+ ··· + 7u
2
+ 1i
I
u
2
= h1.64036 × 10
19
u
35
6.55779 × 10
19
u
34
+ ··· + 1.64861 × 10
20
b 8.76883 × 10
20
,
2.73439 × 10
20
u
35
+ 9.88504 × 10
20
u
34
+ ··· + 2.80263 × 10
21
a + 2.34140 × 10
22
,
u
36
2u
35
+ ··· 16u + 17i
I
u
3
= hb + 1, u
3
+ u
2
+ 2a + 1, u
4
+ u
2
+ u + 1i
I
u
4
= hb + 1, u
5
u
4
+ u
3
u
2
+ a + u, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
I
u
5
= h−a
2
+ 2au + b + 2a 2u 1, a
3
3a
2
u 3a
2
+ 6au + a 2u + 1, u
2
+ 1i
* 5 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h37u
25
+5u
24
+· · ·+32b+3, 11u
25
u
24
+· · ·+64a+73, u
26
+5u
24
+· · ·+7u
2
+1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
0.171875u
25
+ 0.0156250u
24
+ ··· + 4.29688u 1.14063
1.15625u
25
0.156250u
24
+ ··· 1.59375u 0.0937500
a
6
=
1
u
2
a
2
=
1.32813u
25
0.140625u
24
+ ··· + 2.70313u 1.23438
1.15625u
25
0.156250u
24
+ ··· 1.59375u 0.0937500
a
1
=
1
8
u
24
+
1
2
u
22
+ ··· + u +
1
8
1
8
u
24
+
1
2
u
22
+ ··· + u +
1
8
a
4
=
1.39063u
25
+ 0.203125u
24
+ ··· + 4.48438u 2.07813
0.593750u
25
+ 0.343750u
24
+ ··· 0.0937500u 0.593750
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
1
8
u
25
+
1
2
u
23
+ ··· +
1
8
u 1
1
8
u
25
+
1
2
u
23
+ ··· + 2u
2
+
1
8
u
a
12
=
1
8
u
24
+
1
2
u
22
+ ··· + u +
1
8
1
8
u
24
+
1
2
u
22
+ ··· + u +
1
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
563
128
u
25
159
128
u
24
+ ···
1045
128
u
521
128
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 7u
25
+ ··· 47u + 16
c
2
, c
4
u
26
5u
25
+ ··· 17u + 4
c
3
, c
7
u
26
3u
25
+ ··· 304u + 64
c
5
, c
6
, c
9
c
11
u
26
+ 5u
24
+ ··· + 7u
2
+ 1
c
8
u
26
+ 6u
25
+ ··· + 1024u + 256
c
10
, c
12
u
26
+ 10u
25
+ ··· + 14u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
+ 29y
25
+ ··· 4769y + 256
c
2
, c
4
y
26
7y
25
+ ··· + 47y + 16
c
3
, c
7
y
26
27y
25
+ ··· 28928y + 4096
c
5
, c
6
, c
9
c
11
y
26
+ 10y
25
+ ··· + 14y + 1
c
8
y
26
+ 10y
25
+ ··· + 1540096y + 65536
c
10
, c
12
y
26
+ 22y
25
+ ··· + 22y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.686718 + 0.790237I
a = 0.862776 + 0.752523I
b = 0.112686 0.757455I
1.98398 + 2.27305I 3.49441 2.95209I
u = 0.686718 0.790237I
a = 0.862776 0.752523I
b = 0.112686 + 0.757455I
1.98398 2.27305I 3.49441 + 2.95209I
u = 0.332646 + 0.885585I
a = 0.859182 + 0.253751I
b = 0.966203 + 0.651765I
0.374508 1.260680I 0.03372 2.82297I
u = 0.332646 0.885585I
a = 0.859182 0.253751I
b = 0.966203 0.651765I
0.374508 + 1.260680I 0.03372 + 2.82297I
u = 0.943048 + 0.573575I
a = 0.572959 + 1.084400I
b = 1.06906 0.99419I
9.87605 + 3.35816I 3.98629 0.41980I
u = 0.943048 0.573575I
a = 0.572959 1.084400I
b = 1.06906 + 0.99419I
9.87605 3.35816I 3.98629 + 0.41980I
u = 0.597517 + 0.932496I
a = 0.074973 0.361234I
b = 1.085400 + 0.468804I
1.78026 3.46737I 1.87106 + 4.78330I
u = 0.597517 0.932496I
a = 0.074973 + 0.361234I
b = 1.085400 0.468804I
1.78026 + 3.46737I 1.87106 4.78330I
u = 0.925240 + 0.681323I
a = 0.07111 1.54316I
b = 0.94455 + 1.07986I
10.29890 4.17338I 4.09194 + 4.29853I
u = 0.925240 0.681323I
a = 0.07111 + 1.54316I
b = 0.94455 1.07986I
10.29890 + 4.17338I 4.09194 4.29853I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.615881 + 1.015000I
a = 1.05911 1.42400I
b = 1.324650 + 0.202541I
2.47670 + 6.15727I 1.31624 5.25780I
u = 0.615881 1.015000I
a = 1.05911 + 1.42400I
b = 1.324650 0.202541I
2.47670 6.15727I 1.31624 + 5.25780I
u = 0.213984 + 0.755898I
a = 1.343350 + 0.180099I
b = 0.844053 0.643735I
0.79107 + 3.73974I 2.88234 8.52096I
u = 0.213984 0.755898I
a = 1.343350 0.180099I
b = 0.844053 + 0.643735I
0.79107 3.73974I 2.88234 + 8.52096I
u = 0.522459 + 1.135990I
a = 1.068060 0.495553I
b = 0.679614 + 0.169964I
3.56752 8.00011I 1.95259 + 8.91191I
u = 0.522459 1.135990I
a = 1.068060 + 0.495553I
b = 0.679614 0.169964I
3.56752 + 8.00011I 1.95259 8.91191I
u = 0.661950 + 1.073520I
a = 0.360539 + 1.342880I
b = 0.585613 0.805144I
0.06912 8.45528I 0.31615 + 7.82627I
u = 0.661950 1.073520I
a = 0.360539 1.342880I
b = 0.585613 + 0.805144I
0.06912 + 8.45528I 0.31615 7.82627I
u = 0.573105 + 0.355043I
a = 0.431069 0.470281I
b = 0.145218 + 0.443676I
1.181070 + 0.652752I 6.65549 2.84470I
u = 0.573105 0.355043I
a = 0.431069 + 0.470281I
b = 0.145218 0.443676I
1.181070 0.652752I 6.65549 + 2.84470I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.715044 + 1.157990I
a = 0.890942 0.102027I
b = 0.750500 + 1.133340I
7.16363 + 8.23028I 1.13390 4.65943I
u = 0.715044 1.157990I
a = 0.890942 + 0.102027I
b = 0.750500 1.133340I
7.16363 8.23028I 1.13390 + 4.65943I
u = 0.674140 + 1.197450I
a = 1.10131 + 1.68297I
b = 1.16977 0.88449I
5.7894 + 15.5253I 0.62931 8.80838I
u = 0.674140 1.197450I
a = 1.10131 1.68297I
b = 1.16977 + 0.88449I
5.7894 15.5253I 0.62931 + 8.80838I
u = 0.161303 + 0.352465I
a = 0.88611 + 2.09278I
b = 0.960623 0.194500I
1.73934 0.69423I 4.47291 + 0.47105I
u = 0.161303 0.352465I
a = 0.88611 2.09278I
b = 0.960623 + 0.194500I
1.73934 + 0.69423I 4.47291 0.47105I
7
II. I
u
2
= h1.64 × 10
19
u
35
6.56 × 10
19
u
34
+ · · · + 1.65 × 10
20
b 8.77 ×
10
20
, 2.73 × 10
20
u
35
+ 9.89 × 10
20
u
34
+ · · · + 2.80 × 10
21
a + 2.34 ×
10
22
, u
36
2u
35
+ · · · 16u + 17i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
0.0975652u
35
0.352706u
34
+ ··· + 2.60900u 8.35431
0.0994997u
35
+ 0.397778u
34
+ ··· 0.756708u + 5.31894
a
6
=
1
u
2
a
2
=
0.00193454u
35
+ 0.0450723u
34
+ ··· + 1.85229u 3.03538
0.0994997u
35
+ 0.397778u
34
+ ··· 0.756708u + 5.31894
a
1
=
0.167671u
35
0.201737u
34
+ ··· + 7.20414u 0.801787
0.203086u
35
+ 0.207511u
34
+ ··· 4.38662u + 1.19177
a
4
=
0.677695u
35
+ 1.09907u
34
+ ··· 8.59244u + 5.59975
0.0381892u
35
0.396278u
34
+ ··· + 0.00858699u 5.74660
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
0.0123763u
35
+ 0.0202099u
34
+ ··· + 1.02313u + 3.72869
0.0511253u
35
0.134072u
34
+ ··· + 0.364967u 2.38667
a
12
=
0.135850u
35
0.216397u
34
+ ··· + 6.63547u 1.67092
0.158595u
35
+ 0.210763u
34
+ ··· 1.68145u + 1.66988
(ii) Obstruction class = 1
(iii) Cusp Shapes =
92294208925977637035
164860561334912795863
u
35
+
248194929627859910457
164860561334912795863
u
34
+ ···
1193076869772129210292
164860561334912795863
u +
1468116381237737523006
164860561334912795863
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
18
+ 4u
17
+ ··· + 11u + 1)
2
c
2
, c
4
(u
18
4u
17
+ ··· + 3u 1)
2
c
3
, c
7
(u
18
+ u
17
+ ··· + 4u + 8)
2
c
5
, c
6
, c
9
c
11
u
36
2u
35
+ ··· 16u + 17
c
8
(u
18
2u
17
+ ··· 18u 17)
2
c
10
, c
12
u
36
+ 18u
35
+ ··· + 1784u + 289
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
18
+ 24y
17
+ ··· 11y + 1)
2
c
2
, c
4
(y
18
4y
17
+ ··· 11y + 1)
2
c
3
, c
7
(y
18
21y
17
+ ··· 592y + 64)
2
c
5
, c
6
, c
9
c
11
y
36
+ 18y
35
+ ··· + 1784y + 289
c
8
(y
18
+ 10y
17
+ ··· 1106y + 289)
2
c
10
, c
12
y
36
2y
35
+ ··· + 426376y + 83521
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.591186 + 0.787704I
a = 1.56603 0.88745I
b = 0.889957 + 0.956699I
2.38234 1.09047I 0.174080 0.422577I
u = 0.591186 0.787704I
a = 1.56603 + 0.88745I
b = 0.889957 0.956699I
2.38234 + 1.09047I 0.174080 + 0.422577I
u = 0.794635 + 0.529818I
a = 0.753156 1.018670I
b = 0.405572 + 0.756937I
1.68246 + 2.95811I 2.86830 3.60082I
u = 0.794635 0.529818I
a = 0.753156 + 1.018670I
b = 0.405572 0.756937I
1.68246 2.95811I 2.86830 + 3.60082I
u = 0.575111 + 0.759119I
a = 0.73772 + 1.69762I
b = 1.189210 0.282581I
1.21564 1.22055I 0.481280 0.071123I
u = 0.575111 0.759119I
a = 0.73772 1.69762I
b = 1.189210 + 0.282581I
1.21564 + 1.22055I 0.481280 + 0.071123I
u = 0.167080 + 1.041030I
a = 2.61040 3.09914I
b = 1.10588
5.41960 2.98163 + 0.I
u = 0.167080 1.041030I
a = 2.61040 + 3.09914I
b = 1.10588
5.41960 2.98163 + 0.I
u = 0.997738 + 0.395002I
a = 0.292945 1.197000I
b = 1.13145 + 0.93287I
8.25713 9.46502I 2.19641 + 5.12935I
u = 0.997738 0.395002I
a = 0.292945 + 1.197000I
b = 1.13145 0.93287I
8.25713 + 9.46502I 2.19641 5.12935I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.274534 + 0.872882I
a = 0.93452 + 2.44113I
b = 0.509257 0.343539I
3.86556 1.11682I 2.38496 + 6.15764I
u = 0.274534 0.872882I
a = 0.93452 2.44113I
b = 0.509257 + 0.343539I
3.86556 + 1.11682I 2.38496 6.15764I
u = 0.588697 + 0.917985I
a = 0.52281 + 2.44549I
b = 1.023450 0.903197I
1.96168 + 5.76942I 0.89628 5.17142I
u = 0.588697 0.917985I
a = 0.52281 2.44549I
b = 1.023450 + 0.903197I
1.96168 5.76942I 0.89628 + 5.17142I
u = 0.985654 + 0.488151I
a = 0.268666 + 1.306090I
b = 0.841043 1.112380I
9.21890 2.04734I 3.38974 + 0.64724I
u = 0.985654 0.488151I
a = 0.268666 1.306090I
b = 0.841043 + 1.112380I
9.21890 + 2.04734I 3.38974 0.64724I
u = 0.670337 + 0.891635I
a = 0.058974 1.277660I
b = 0.405572 + 0.756937I
1.68246 + 2.95811I 2.86830 3.60082I
u = 0.670337 0.891635I
a = 0.058974 + 1.277660I
b = 0.405572 0.756937I
1.68246 2.95811I 2.86830 + 3.60082I
u = 0.626901 + 0.585336I
a = 0.339138 + 0.406991I
b = 1.189210 0.282581I
1.21564 1.22055I 0.481280 0.071123I
u = 0.626901 0.585336I
a = 0.339138 0.406991I
b = 1.189210 + 0.282581I
1.21564 + 1.22055I 0.481280 + 0.071123I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.453358 + 1.062450I
a = 1.049730 + 0.489075I
b = 0.550076 0.259421I
0.92819 + 3.34376I 3.77359 4.65236I
u = 0.453358 1.062450I
a = 1.049730 0.489075I
b = 0.550076 + 0.259421I
0.92819 3.34376I 3.77359 + 4.65236I
u = 0.106316 + 1.174290I
a = 0.436208 0.085284I
b = 0.509257 + 0.343539I
3.86556 + 1.11682I 2.38496 6.15764I
u = 0.106316 1.174290I
a = 0.436208 + 0.085284I
b = 0.509257 0.343539I
3.86556 1.11682I 2.38496 + 6.15764I
u = 0.331026 + 1.152710I
a = 0.999190 0.535049I
b = 0.441998
4.89262 6 1.185937 + 0.10I
u = 0.331026 1.152710I
a = 0.999190 + 0.535049I
b = 0.441998
4.89262 6 1.185937 + 0.10I
u = 0.715398 + 0.207958I
a = 0.433150 0.002861I
b = 0.550076 0.259421I
0.92819 + 3.34376I 3.77359 4.65236I
u = 0.715398 0.207958I
a = 0.433150 + 0.002861I
b = 0.550076 + 0.259421I
0.92819 3.34376I 3.77359 + 4.65236I
u = 0.775491 + 1.032570I
a = 0.952803 + 0.345976I
b = 0.841043 1.112380I
9.21890 2.04734I 3.38974 + 0.64724I
u = 0.775491 1.032570I
a = 0.952803 0.345976I
b = 0.841043 + 1.112380I
9.21890 + 2.04734I 3.38974 0.64724I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.726810 + 1.099240I
a = 0.83534 1.78440I
b = 1.13145 + 0.93287I
8.25713 9.46502I 2.19641 + 5.12935I
u = 0.726810 1.099240I
a = 0.83534 + 1.78440I
b = 1.13145 0.93287I
8.25713 + 9.46502I 2.19641 5.12935I
u = 0.066926 + 1.357280I
a = 0.785883 + 0.110703I
b = 0.889957 0.956699I
2.38234 + 1.09047I 0.174080 + 0.422577I
u = 0.066926 1.357280I
a = 0.785883 0.110703I
b = 0.889957 + 0.956699I
2.38234 1.09047I 0.174080 0.422577I
u = 0.151444 + 1.368190I
a = 0.753153 0.013270I
b = 1.023450 + 0.903197I
1.96168 5.76942I 0.89628 + 5.17142I
u = 0.151444 1.368190I
a = 0.753153 + 0.013270I
b = 1.023450 0.903197I
1.96168 + 5.76942I 0.89628 5.17142I
14
III. I
u
3
= hb + 1, u
3
+ u
2
+ 2a + 1, u
4
+ u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
1
2
u
3
1
2
u
2
1
2
1
a
6
=
1
u
2
a
2
=
1
2
u
3
1
2
u
2
3
2
1
a
1
=
1
0
a
4
=
1
2
u
3
1
2
u
2
1
2
1
a
9
=
u
u
3
+ u
a
11
=
u
3
u
2
a
8
=
u
3
u
3
+ u
a
7
=
u
3
u
3
+ u
a
12
=
u
3
u
2
u 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
21
4
u
3
11
4
u
2
+
1
2
u
1
4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
u
4
+ u
2
+ u + 1
c
8
u
4
3u
3
+ 4u
2
3u + 2
c
9
, c
11
u
4
+ u
2
u + 1
c
10
, c
12
u
4
+ 2u
3
+ 3u
2
+ u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
9
c
11
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
8
y
4
y
3
+ 2y
2
+ 7y + 4
c
10
, c
12
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.278726 + 0.483420I
b = 1.00000
0.66484 1.39709I 1.69137 + 3.76574I
u = 0.547424 0.585652I
a = 0.278726 0.483420I
b = 1.00000
0.66484 + 1.39709I 1.69137 3.76574I
u = 0.547424 + 1.120870I
a = 0.971274 0.813859I
b = 1.00000
4.26996 + 7.64338I 7.31637 4.91712I
u = 0.547424 1.120870I
a = 0.971274 + 0.813859I
b = 1.00000
4.26996 7.64338I 7.31637 + 4.91712I
18
IV.
I
u
4
= hb + 1, u
5
u
4
+ u
3
u
2
+ a + u, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
u
5
+ u
4
u
3
+ u
2
u
1
a
6
=
1
u
2
a
2
=
u
5
+ u
4
u
3
+ u
2
u 1
1
a
1
=
1
0
a
4
=
u
5
+ u
4
u
3
+ u
2
u
1
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
u
3
u
3
+ u
a
12
=
u
4
u
2
+ u 1
2u
5
u
4
+ 3u
3
2u
2
+ 3u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
+ 3u
3
+ u
2
+ 3u 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
6
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
8
(u
3
+ u
2
1)
2
c
9
, c
11
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
10
, c
12
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
6
, c
9
c
11
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
8
(y
3
y
2
+ 2y 1)
2
c
10
, c
12
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.767394 + 0.943705I
b = 1.00000
1.91067 2.82812I 2.82789 + 2.41717I
u = 0.498832 1.001300I
a = 0.767394 0.943705I
b = 1.00000
1.91067 + 2.82812I 2.82789 2.41717I
u = 0.284920 + 1.115140I
a = 1.37744 1.47725I
b = 1.00000
6.04826 11.34423 + 0.I
u = 0.284920 1.115140I
a = 1.37744 + 1.47725I
b = 1.00000
6.04826 11.34423 + 0.I
u = 0.713912 + 0.305839I
a = 0.355167 0.198843I
b = 1.00000
1.91067 2.82812I 2.82789 + 2.41717I
u = 0.713912 0.305839I
a = 0.355167 + 0.198843I
b = 1.00000
1.91067 + 2.82812I 2.82789 2.41717I
22
V.
I
u
5
= h−a
2
+ 2au + b + 2a 2u 1, a
3
3a
2
u 3a
2
+ 6au + a 2u + 1, u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
a
a
2
2au 2a + 2u + 1
a
6
=
1
1
a
2
=
a
2
2au a + 2u + 1
a
2
2au 2a + 2u + 1
a
1
=
au + 2
au u + 2
a
4
=
a
2
u 2a
2
+ 7au + 2a 5u + 2
a
2
+ 3au + 2a 3u
a
9
=
u
0
a
11
=
u
u
a
8
=
u
0
a
7
=
a + 2u
a + 2u + 1
a
12
=
au + u + 2
au + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
8au 8a + 8u 4
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
, c
7
u
6
3u
4
+ 2u
2
+ 1
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
9
c
11
(u
2
+ 1)
3
c
8
u
6
c
10
, c
12
(u + 1)
6
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
3
, c
7
(y
3
3y
2
+ 2y + 1)
2
c
5
, c
6
, c
9
c
11
(y + 1)
6
c
8
y
6
c
10
, c
12
(y 1)
6
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.437720 + 0.337641I
b = 0.877439 + 0.744862I
0.26574 2.82812I 4.49024 + 2.97945I
u = 1.000000I
a = 1.56228 + 0.33764I
b = 0.877439 0.744862I
0.26574 + 2.82812I 4.49024 2.97945I
u = 1.000000I
a = 1.00000 + 2.32472I
b = 0.754878
4.40332 11.01951 + 0.I
u = 1.000000I
a = 0.437720 0.337641I
b = 0.877439 0.744862I
0.26574 + 2.82812I 4.49024 2.97945I
u = 1.000000I
a = 1.56228 0.33764I
b = 0.877439 + 0.744862I
0.26574 2.82812I 4.49024 + 2.97945I
u = 1.000000I
a = 1.00000 2.32472I
b = 0.754878
4.40332 11.01951 + 0.I
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
3
u
2
+ 2u 1)
2
(u
18
+ 4u
17
+ ··· + 11u + 1)
2
· (u
26
+ 7u
25
+ ··· 47u + 16)
c
2
((u 1)
10
)(u
3
+ u
2
1)
2
(u
18
4u
17
+ ··· + 3u 1)
2
· (u
26
5u
25
+ ··· 17u + 4)
c
3
, c
7
u
10
(u
6
3u
4
+ 2u
2
+ 1)(u
18
+ u
17
+ ··· + 4u + 8)
2
· (u
26
3u
25
+ ··· 304u + 64)
c
4
((u + 1)
10
)(u
3
u
2
+ 1)
2
(u
18
4u
17
+ ··· + 3u 1)
2
· (u
26
5u
25
+ ··· 17u + 4)
c
5
, c
6
(u
2
+ 1)
3
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
26
+ 5u
24
+ ··· + 7u
2
+ 1)(u
36
2u
35
+ ··· 16u + 17)
c
8
u
6
(u
3
+ u
2
1)
2
(u
4
3u
3
+ 4u
2
3u + 2)
· ((u
18
2u
17
+ ··· 18u 17)
2
)(u
26
+ 6u
25
+ ··· + 1024u + 256)
c
9
, c
11
(u
2
+ 1)
3
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
26
+ 5u
24
+ ··· + 7u
2
+ 1)(u
36
2u
35
+ ··· 16u + 17)
c
10
, c
12
(u + 1)
6
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
26
+ 10u
25
+ ··· + 14u + 1)(u
36
+ 18u
35
+ ··· + 1784u + 289)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
3
+ 3y
2
+ 2y 1)
2
(y
18
+ 24y
17
+ ··· 11y + 1)
2
· (y
26
+ 29y
25
+ ··· 4769y + 256)
c
2
, c
4
((y 1)
10
)(y
3
y
2
+ 2y 1)
2
(y
18
4y
17
+ ··· 11y + 1)
2
· (y
26
7y
25
+ ··· + 47y + 16)
c
3
, c
7
y
10
(y
3
3y
2
+ 2y + 1)
2
(y
18
21y
17
+ ··· 592y + 64)
2
· (y
26
27y
25
+ ··· 28928y + 4096)
c
5
, c
6
, c
9
c
11
(y + 1)
6
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
26
+ 10y
25
+ ··· + 14y + 1)(y
36
+ 18y
35
+ ··· + 1784y + 289)
c
8
y
6
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
18
+ 10y
17
+ ··· 1106y + 289)
2
· (y
26
+ 10y
25
+ ··· + 1540096y + 65536)
c
10
, c
12
(y 1)
6
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
26
+ 22y
25
+ ··· + 22y + 1)(y
36
2y
35
+ ··· + 426376y + 83521)
28