12n
0168
(K12n
0168
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 11 4 5 12 6 7 9
Solving Sequence
6,10
11 7 12
2,5
3 1 4 9 8
c
10
c
6
c
11
c
5
c
2
c
1
c
4
c
9
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
20
+ 10u
18
+ ··· + b + 2u, u
23
u
22
+ ··· + a 1, u
24
2u
23
+ ··· 8u
2
+ 1i
I
u
2
= hu
4
2u
2
+ b + 2u, u
5
+ 3u
3
+ a + 1, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
20
+10 u
18
+ · · ·+b+2u, u
23
u
22
+ · · ·+a1, u
24
2u
23
+ · · ·8u
2
+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
23
+ u
22
+ ··· + 5u + 1
u
20
10u
18
+ ··· 6u
2
2u
a
5
=
u
u
a
3
=
2u
23
+ u
22
+ ··· + 6u + 2
u
23
+ 12u
21
+ ··· u + 1
a
1
=
u
10
5u
8
+ 8u
6
5u
4
+ 3u
2
1
u
12
6u
10
+ 12u
8
8u
6
+ u
4
2u
2
a
4
=
u
19
+ 10u
17
+ ··· + 5u + 1
u
23
u
22
+ ··· 2u 1
a
9
=
u
6
+ 3u
4
2u
2
+ 1
u
8
+ 4u
6
4u
4
a
8
=
u
10
+ 5u
8
8u
6
+ 5u
4
3u
2
+ 1
u
10
+ 4u
8
3u
6
2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
23
+ 7u
22
+ 45u
21
76u
20
213u
19
+ 331u
18
+ 563u
17
727u
16
961u
15
+ 840u
14
+ 1203u
13
550u
12
1159u
11
+ 373u
10
+ 788u
9
284u
8
414u
7
+ 79u
6
+ 239u
5
78u
4
63u
3
+ 41u
2
+ 22u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ u
23
+ ··· + 33u + 1
c
2
, c
4
u
24
7u
23
+ ··· 9u + 1
c
3
, c
7
u
24
u
23
+ ··· + 64u + 64
c
5
, c
6
, c
10
c
11
u
24
2u
23
+ ··· 8u
2
+ 1
c
8
u
24
+ 2u
23
+ ··· + 7956u + 4721
c
9
, c
12
u
24
2u
23
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 51y
23
+ ··· 789y + 1
c
2
, c
4
y
24
y
23
+ ··· 33y + 1
c
3
, c
7
y
24
39y
23
+ ··· 65536y + 4096
c
5
, c
6
, c
10
c
11
y
24
26y
23
+ ··· 16y + 1
c
8
y
24
+ 94y
23
+ ··· 805269180y + 22287841
c
9
, c
12
y
24
+ 34y
23
+ ··· 16y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.546136 + 0.704998I
a = 0.218919 + 0.545111I
b = 1.58637 + 0.30753I
13.8157 + 6.6372I 5.51662 4.82221I
u = 0.546136 0.704998I
a = 0.218919 0.545111I
b = 1.58637 0.30753I
13.8157 6.6372I 5.51662 + 4.82221I
u = 0.490937 + 0.721217I
a = 0.42824 + 1.49833I
b = 0.020820 0.317218I
13.98230 1.87133I 5.11127 0.61495I
u = 0.490937 0.721217I
a = 0.42824 1.49833I
b = 0.020820 + 0.317218I
13.98230 + 1.87133I 5.11127 + 0.61495I
u = 0.581256 + 0.532393I
a = 0.124238 + 0.261688I
b = 1.180950 + 0.505513I
2.81700 3.48253I 5.09473 + 5.87430I
u = 0.581256 0.532393I
a = 0.124238 0.261688I
b = 1.180950 0.505513I
2.81700 + 3.48253I 5.09473 5.87430I
u = 0.371044 + 0.593072I
a = 0.614735 + 1.078340I
b = 0.138383 + 0.111177I
3.46440 0.36969I 3.22680 + 1.74990I
u = 0.371044 0.593072I
a = 0.614735 1.078340I
b = 0.138383 0.111177I
3.46440 + 0.36969I 3.22680 1.74990I
u = 0.560055
a = 0.358547
b = 0.698358
0.920303 10.4000
u = 1.44707 + 0.16024I
a = 0.1025080 + 0.0199673I
b = 0.075688 0.613179I
2.38092 + 3.00213I 7.53165 2.42924I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44707 0.16024I
a = 0.1025080 0.0199673I
b = 0.075688 + 0.613179I
2.38092 3.00213I 7.53165 + 2.42924I
u = 1.46661 + 0.06456I
a = 1.18298 + 1.35435I
b = 1.81615 + 1.04191I
6.76285 2.21001I 11.76840 + 2.54579I
u = 1.46661 0.06456I
a = 1.18298 1.35435I
b = 1.81615 1.04191I
6.76285 + 2.21001I 11.76840 2.54579I
u = 1.47571
a = 3.35878
b = 4.21798
8.10337 9.82550
u = 1.50201 + 0.24602I
a = 0.543477 0.750165I
b = 1.09231 1.65332I
7.50585 1.64558I 8.27015 + 0.73963I
u = 1.50201 0.24602I
a = 0.543477 + 0.750165I
b = 1.09231 + 1.65332I
7.50585 + 1.64558I 8.27015 0.73963I
u = 0.344587 + 0.302443I
a = 1.119750 + 0.097114I
b = 0.366639 + 0.663744I
0.814955 + 1.024630I 8.91038 6.27818I
u = 0.344587 0.302443I
a = 1.119750 0.097114I
b = 0.366639 0.663744I
0.814955 1.024630I 8.91038 + 6.27818I
u = 1.53592 + 0.23426I
a = 2.64852 0.49160I
b = 3.50928 + 0.08824I
6.98523 10.07590I 8.82304 + 4.75008I
u = 1.53592 0.23426I
a = 2.64852 + 0.49160I
b = 3.50928 0.08824I
6.98523 + 10.07590I 8.82304 4.75008I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55778
a = 2.20275
b = 2.47794
8.18010 9.41090
u = 1.55100 + 0.14681I
a = 2.45672 0.03517I
b = 2.88742 + 0.30740I
4.30018 + 5.91154I 8.53274 5.50143I
u = 1.55100 0.14681I
a = 2.45672 + 0.03517I
b = 2.88742 0.30740I
4.30018 5.91154I 8.53274 + 5.50143I
u = 0.323756
a = 2.07762
b = 1.24627
2.07138 3.20840
7
II.
I
u
2
= hu
4
2u
2
+ b + 2u, u
5
+ 3u
3
+ a + 1, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
5
3u
3
1
u
4
+ 2u
2
2u
a
5
=
u
u
a
3
=
u
5
3u
3
+ u 1
u
4
+ 2u
2
u
a
1
=
u
u
a
4
=
u
5
3u
3
+ u 1
u
4
+ 2u
2
u
a
9
=
u
5
2u
3
u
u
5
3u
3
+ u
a
8
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
+ u
4
14u
3
u
2
+ 14u 18
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
6
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
8
, c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
c
9
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
10
, c
11
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
6
, c
10
c
11
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
8
, c
9
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.011399 0.918055I
b = 0.847526 + 0.083869I
1.31531 1.97241I 6.43930 + 3.48596I
u = 0.493180 0.575288I
a = 0.011399 + 0.918055I
b = 0.847526 0.083869I
1.31531 + 1.97241I 6.43930 3.48596I
u = 0.483672
a = 0.687021
b = 1.38049
2.38379 23.4460
u = 1.52087 + 0.16310I
a = 1.98288 + 0.88048I
b = 2.63293 + 0.95019I
5.34051 + 4.59213I 10.66600 2.48468I
u = 1.52087 0.16310I
a = 1.98288 0.88048I
b = 2.63293 0.95019I
5.34051 4.59213I 10.66600 + 2.48468I
u = 1.53904
a = 3.30155
b = 3.95130
9.30502 18.3430
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
24
+ u
23
+ ··· + 33u + 1)
c
2
((u 1)
6
)(u
24
7u
23
+ ··· 9u + 1)
c
3
, c
7
u
6
(u
24
u
23
+ ··· + 64u + 64)
c
4
((u + 1)
6
)(u
24
7u
23
+ ··· 9u + 1)
c
5
, c
6
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
24
2u
23
+ ··· 8u
2
+ 1)
c
8
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
24
+ 2u
23
+ ··· + 7956u + 4721)
c
9
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
24
2u
23
+ ··· + 2u + 1)
c
10
, c
11
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
24
2u
23
+ ··· 8u
2
+ 1)
c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
24
2u
23
+ ··· + 2u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
24
+ 51y
23
+ ··· 789y + 1)
c
2
, c
4
((y 1)
6
)(y
24
y
23
+ ··· 33y + 1)
c
3
, c
7
y
6
(y
24
39y
23
+ ··· 65536y + 4096)
c
5
, c
6
, c
10
c
11
(y
6
7y
5
+ ··· 5y + 1)(y
24
26y
23
+ ··· 16y + 1)
c
8
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
· (y
24
+ 94y
23
+ ··· 805269180y + 22287841)
c
9
, c
12
(y
6
+ 5y
5
+ ··· 5y + 1)(y
24
+ 34y
23
+ ··· 16y + 1)
13