12n
0169
(K12n
0169
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 11 10 3 5 12 6 7 9
Solving Sequence
6,10 3,7
8 11 12 5 2 1 4 9
c
6
c
7
c
10
c
11
c
5
c
2
c
1
c
4
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
31
+ u
30
+ ··· + b + 2u, u
31
u
30
+ ··· + a 5u, u
32
2u
31
+ ··· + 5u 1i
I
u
2
= hb + u, u
2
+ a + 2, u
3
+ 2u 1i
I
u
3
= h−u
2
+ b u, u
3
+ u
2
+ a + 2u + 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
31
+u
30
+· · ·+b+2u, u
31
u
30
+· · ·+a5u, u
32
2u
31
+· · ·+5u1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
u
31
+ u
30
+ ··· 7u
2
+ 5u
u
31
u
30
+ ··· + 3u
2
2u
a
7
=
1
u
2
a
8
=
u
13
+ 6u
11
+ 13u
9
+ 12u
7
+ 6u
5
+ 4u
3
+ u
u
13
5u
11
7u
9
+ 2u
5
3u
3
+ u
a
11
=
u
u
a
12
=
u
3
2u
u
5
u
3
+ u
a
5
=
u
2
+ 1
u
2
a
2
=
u
25
+ 12u
23
+ ··· 4u
2
+ 3u
u
27
u
26
+ ··· + 3u
2
2u
a
1
=
u
11
+ 6u
9
+ 12u
7
+ 8u
5
+ u
3
+ 2u
u
13
+ 5u
11
+ 7u
9
2u
5
+ 3u
3
u
a
4
=
u
31
u
30
+ ··· + u + 1
u
31
+ u
30
+ ··· + u
2
u
a
9
=
u
7
+ 4u
5
+ 4u
3
u
9
+ 3u
7
+ u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
31
+ 8u
30
69u
29
+ 118u
28
516u
27
+ 760u
26
2191u
25
+
2774u
24
5768u
23
+ 6188u
22
9542u
21
+ 8335u
20
9334u
19
+ 5857u
18
4125u
17
+
549u
16
+ 634u
15
1814u
14
+ 878u
13
598u
12
232u
11
15u
10
+ 140u
9
465u
8
+
354u
7
156u
6
44u
5
+ 113u
4
54u
3
27u
2
+ 31u 23
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
32
+ 44u
31
+ ··· + 48u + 1
c
2
, c
4
u
32
8u
31
+ ··· + 24u
2
1
c
3
, c
7
u
32
u
31
+ ··· + 192u + 128
c
5
, c
6
, c
10
u
32
+ 2u
31
+ ··· 5u 1
c
8
u
32
+ 2u
31
+ ··· 3u 1
c
9
, c
12
u
32
6u
31
+ ··· 39u + 19
c
11
u
32
2u
31
+ ··· 40u 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
32
104y
31
+ ··· 1812y + 1
c
2
, c
4
y
32
44y
31
+ ··· 48y + 1
c
3
, c
7
y
32
45y
31
+ ··· 12288y + 16384
c
5
, c
6
, c
10
y
32
+ 30y
31
+ ··· 9y + 1
c
8
y
32
66y
31
+ ··· 9y + 1
c
9
, c
12
y
32
+ 18y
31
+ ··· 1673y + 361
c
11
y
32
+ 6y
31
+ ··· + 368y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.066411 + 1.151990I
a = 1.410670 + 0.024945I
b = 2.76292 0.86053I
0.138725 + 1.342600I 14.3827 1.1828I
u = 0.066411 1.151990I
a = 1.410670 0.024945I
b = 2.76292 + 0.86053I
0.138725 1.342600I 14.3827 + 1.1828I
u = 0.513081 + 0.643079I
a = 0.646531 + 0.515194I
b = 1.64282 0.89836I
9.52014 + 3.30104I 13.33638 + 0.19936I
u = 0.513081 0.643079I
a = 0.646531 0.515194I
b = 1.64282 + 0.89836I
9.52014 3.30104I 13.33638 0.19936I
u = 0.737634 + 0.348273I
a = 2.23105 1.72413I
b = 0.0831051 0.0958486I
10.57590 7.60354I 15.1269 + 5.2212I
u = 0.737634 0.348273I
a = 2.23105 + 1.72413I
b = 0.0831051 + 0.0958486I
10.57590 + 7.60354I 15.1269 5.2212I
u = 0.298547 + 1.193750I
a = 1.40936 1.46969I
b = 2.94438 + 2.80689I
11.30460 + 3.80890I 14.0876 3.1596I
u = 0.298547 1.193750I
a = 1.40936 + 1.46969I
b = 2.94438 2.80689I
11.30460 3.80890I 14.0876 + 3.1596I
u = 0.748139
a = 3.59916
b = 0.104790
14.9662 18.4420
u = 0.606144 + 0.421198I
a = 0.546855 + 0.039840I
b = 0.102884 + 0.314041I
2.64609 + 1.95373I 5.09513 3.50992I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.606144 0.421198I
a = 0.546855 0.039840I
b = 0.102884 0.314041I
2.64609 1.95373I 5.09513 + 3.50992I
u = 0.087660 + 1.285000I
a = 0.478992 + 0.327569I
b = 1.049280 0.185331I
3.25069 1.60094I 6.41790 + 3.90851I
u = 0.087660 1.285000I
a = 0.478992 0.327569I
b = 1.049280 + 0.185331I
3.25069 + 1.60094I 6.41790 3.90851I
u = 0.636337 + 0.293336I
a = 1.79875 + 1.45255I
b = 0.098008 0.391373I
1.49855 3.68796I 14.9081 + 6.2088I
u = 0.636337 0.293336I
a = 1.79875 1.45255I
b = 0.098008 + 0.391373I
1.49855 + 3.68796I 14.9081 6.2088I
u = 0.570243 + 0.210892I
a = 2.18842 0.55206I
b = 0.306041 0.510133I
2.65931 + 1.04311I 15.7710 5.3018I
u = 0.570243 0.210892I
a = 2.18842 + 0.55206I
b = 0.306041 + 0.510133I
2.65931 1.04311I 15.7710 + 5.3018I
u = 0.223261 + 1.390520I
a = 1.39534 + 1.47490I
b = 2.07768 2.46657I
2.48306 + 3.95929I 10.08448 4.02414I
u = 0.223261 1.390520I
a = 1.39534 1.47490I
b = 2.07768 + 2.46657I
2.48306 3.95929I 10.08448 + 4.02414I
u = 0.17860 + 1.41277I
a = 0.040682 + 0.405502I
b = 0.92757 1.07299I
4.99294 1.76578I 7.97967 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.17860 1.41277I
a = 0.040682 0.405502I
b = 0.92757 + 1.07299I
4.99294 + 1.76578I 7.97967 + 0.I
u = 0.24778 + 1.41576I
a = 0.414031 1.342460I
b = 1.22414 + 3.01107I
3.97101 6.92815I 10.07608 + 5.79570I
u = 0.24778 1.41576I
a = 0.414031 + 1.342460I
b = 1.22414 3.01107I
3.97101 + 6.92815I 10.07608 5.79570I
u = 0.362402 + 0.388238I
a = 1.219120 0.628084I
b = 0.742946 + 0.324636I
0.624317 + 0.441347I 12.18762 + 0.45370I
u = 0.362402 0.388238I
a = 1.219120 + 0.628084I
b = 0.742946 0.324636I
0.624317 0.441347I 12.18762 0.45370I
u = 0.28464 + 1.44733I
a = 0.48786 + 2.28909I
b = 0.97778 4.42043I
4.81611 11.32490I 11.18818 + 5.52166I
u = 0.28464 1.44733I
a = 0.48786 2.28909I
b = 0.97778 + 4.42043I
4.81611 + 11.32490I 11.18818 5.52166I
u = 0.22536 + 1.45912I
a = 0.502797 0.538242I
b = 0.712769 + 0.835870I
8.69537 + 5.01097I 0. 2.91597I
u = 0.22536 1.45912I
a = 0.502797 + 0.538242I
b = 0.712769 0.835870I
8.69537 5.01097I 0. + 2.91597I
u = 0.13561 + 1.49035I
a = 0.978732 + 0.012239I
b = 0.422885 0.072441I
2.61419 + 1.12722I 9.88189 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13561 1.49035I
a = 0.978732 0.012239I
b = 0.422885 + 0.072441I
2.61419 1.12722I 9.88189 + 0.I
u = 0.360560
a = 1.03093
b = 0.258292
0.601323 16.4090
8
II. I
u
2
= hb + u, u
2
+ a + 2, u
3
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
u
2
2
u
a
7
=
1
u
2
a
8
=
1
u
2
a
11
=
u
u
a
12
=
1
u
2
u + 1
a
5
=
u
2
+ 1
u
2
a
2
=
2u
2
3
u
2
u
a
1
=
u
2
1
u
2
a
4
=
u
2
2
u
a
9
=
u
u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
3u 14
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
7
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
9
u
3
+ 2u 1
c
8
, c
10
, c
12
u
3
+ 2u + 1
c
11
u
3
+ 3u
2
+ 5u + 2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
7
y
3
c
5
, c
6
, c
8
c
9
, c
10
, c
12
y
3
+ 4y
2
+ 4y 1
c
11
y
3
+ y
2
+ 13y 4
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 0.102785 + 0.665457I
b = 0.22670 1.46771I
7.79580 + 5.13794I 11.21712 3.73768I
u = 0.22670 1.46771I
a = 0.102785 0.665457I
b = 0.22670 + 1.46771I
7.79580 5.13794I 11.21712 + 3.73768I
u = 0.453398
a = 2.20557
b = 0.453398
2.43213 15.5660
12
III. I
u
3
= h−u
2
+ b u, u
3
+ u
2
+ a + 2u + 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
u
3
u
2
2u 1
u
2
+ u
a
7
=
1
u
2
a
8
=
1
u
2
a
11
=
u
u
a
12
=
u
3
2u
1
a
5
=
u
2
+ 1
u
2
a
2
=
u
3
2u
2
2u 2
2u
2
+ u
a
1
=
u
2
1
u
2
a
4
=
u
3
u
2
2u 1
u
2
+ u
a
9
=
2u
3
+ u
2
+ 3u + 3
u
3
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
2u
2
6u 17
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
, c
9
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
8
, c
10
, c
12
u
4
u
3
+ 2u
2
2u + 1
c
11
(u
2
u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
8
c
9
, c
10
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
11
(y
2
+ y + 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.070696 0.758745I
b = 0.429304 0.107280I
1.64493 + 2.02988I 14.2631 3.6750I
u = 0.621744 0.440597I
a = 0.070696 + 0.758745I
b = 0.429304 + 0.107280I
1.64493 2.02988I 14.2631 + 3.6750I
u = 0.121744 + 1.306620I
a = 1.070700 0.758745I
b = 1.57070 + 1.62477I
1.64493 2.02988I 11.23686 + 2.38721I
u = 0.121744 1.306620I
a = 1.070700 + 0.758745I
b = 1.57070 1.62477I
1.64493 + 2.02988I 11.23686 2.38721I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
7
)(u
32
+ 44u
31
+ ··· + 48u + 1)
c
2
((u 1)
7
)(u
32
8u
31
+ ··· + 24u
2
1)
c
3
, c
7
u
7
(u
32
u
31
+ ··· + 192u + 128)
c
4
((u + 1)
7
)(u
32
8u
31
+ ··· + 24u
2
1)
c
5
, c
6
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
32
+ 2u
31
+ ··· 5u 1)
c
8
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
32
+ 2u
31
+ ··· 3u 1)
c
9
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
32
6u
31
+ ··· 39u + 19)
c
10
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
32
+ 2u
31
+ ··· 5u 1)
c
11
((u
2
u + 1)
2
)(u
3
+ 3u
2
+ 5u + 2)(u
32
2u
31
+ ··· 40u 8)
c
12
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
32
6u
31
+ ··· 39u + 19)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
7
)(y
32
104y
31
+ ··· 1812y + 1)
c
2
, c
4
((y 1)
7
)(y
32
44y
31
+ ··· 48y + 1)
c
3
, c
7
y
7
(y
32
45y
31
+ ··· 12288y + 16384)
c
5
, c
6
, c
10
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
32
+ 30y
31
+ ··· 9y + 1)
c
8
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
32
66y
31
+ ··· 9y + 1)
c
9
, c
12
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
32
+ 18y
31
+ ··· 1673y + 361)
c
11
((y
2
+ y + 1)
2
)(y
3
+ y
2
+ 13y 4)(y
32
+ 6y
31
+ ··· + 368y + 64)
18