12n
0172
(K12n
0172
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 11 9 3 5 12 6 10 7
Solving Sequence
6,10
11 12
3,5
2 1 4 9 7 8
c
10
c
11
c
5
c
2
c
1
c
4
c
9
c
6
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
19
2u
18
+ ··· + b + 1, u
19
u
18
+ ··· + a 1, u
20
+ 2u
19
+ ··· 3u 1i
I
u
2
= hu
7
+ u
5
+ 2u
3
+ u
2
+ b + u, u
6
+ u
4
+ 2u
2
+ a + u + 1, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
19
2u
18
+· · ·+b+1, u
19
u
18
+· · ·+a1, u
20
+2u
19
+· · ·3u1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
12
=
u
2
+ 1
u
2
a
3
=
u
19
+ u
18
+ ··· + u
2
+ 1
u
19
+ 2u
18
+ ··· 4u 1
a
5
=
u
u
3
+ u
a
2
=
2u
19
+ 2u
18
+ ··· 4u
3
+ 1
2u
19
+ 4u
18
+ ··· 6u 2
a
1
=
u
16
3u
14
7u
12
10u
10
11u
8
8u
6
4u
4
+ 1
u
16
2u
14
4u
12
4u
10
2u
8
+ 2u
4
+ 2u
2
a
4
=
3u
19
3u
18
+ ··· + u
2
+ 2u
3u
19
6u
18
+ ··· + 9u + 3
a
9
=
u
4
+ u
2
+ 1
u
4
a
7
=
u
9
2u
7
3u
5
2u
3
u
u
9
u
7
u
5
+ u
a
8
=
u
8
u
6
u
4
+ 1
u
10
2u
8
3u
6
2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
19
+ 2u
18
+ 12u
17
+ 2u
16
+ 32u
15
+ 51u
13
13u
12
+ 70u
11
37u
10
+ 68u
9
56u
8
+ 60u
7
63u
6
+ 33u
5
47u
4
+ 20u
3
17u
2
+ 4u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 42u
19
+ ··· + 23u + 1
c
2
, c
4
u
20
10u
19
+ ··· + 5u 1
c
3
, c
7
u
20
u
19
+ ··· + 512u + 512
c
5
, c
10
u
20
+ 2u
19
+ ··· 3u 1
c
6
u
20
10u
19
+ ··· + 85u 43
c
8
, c
12
u
20
+ 2u
19
+ ··· 3u 1
c
9
, c
11
u
20
6u
19
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
198y
19
+ ··· 639y + 1
c
2
, c
4
y
20
42y
19
+ ··· 23y + 1
c
3
, c
7
y
20
57y
19
+ ··· + 1310720y + 262144
c
5
, c
10
y
20
+ 6y
19
+ ··· 3y + 1
c
6
y
20
18y
19
+ ··· 4731y + 1849
c
8
, c
12
y
20
42y
19
+ ··· 3y + 1
c
9
, c
11
y
20
+ 18y
19
+ ··· 91y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.124469 + 0.908169I
a = 0.110121 0.528184I
b = 0.493387 + 0.034266I
1.75893 + 1.54466I 2.08831 4.86880I
u = 0.124469 0.908169I
a = 0.110121 + 0.528184I
b = 0.493387 0.034266I
1.75893 1.54466I 2.08831 + 4.86880I
u = 0.654133 + 0.871364I
a = 0.515368 0.661677I
b = 0.239442 0.881898I
0.94442 + 2.54047I 4.33649 2.91190I
u = 0.654133 0.871364I
a = 0.515368 + 0.661677I
b = 0.239442 + 0.881898I
0.94442 2.54047I 4.33649 + 2.91190I
u = 0.783905 + 0.795880I
a = 0.264051 + 0.040665I
b = 0.174627 0.242030I
3.99381 + 0.03901I 12.11070 0.38222I
u = 0.783905 0.795880I
a = 0.264051 0.040665I
b = 0.174627 + 0.242030I
3.99381 0.03901I 12.11070 + 0.38222I
u = 0.284303 + 1.108040I
a = 1.021690 0.407132I
b = 0.160650 + 1.247820I
15.4921 3.6755I 8.75395 + 3.01938I
u = 0.284303 1.108040I
a = 1.021690 + 0.407132I
b = 0.160650 1.247820I
15.4921 + 3.6755I 8.75395 3.01938I
u = 0.903441 + 0.739223I
a = 0.70712 2.78319I
b = 1.41856 3.03717I
15.9851 3.3273I 13.99686 + 0.12457I
u = 0.903441 0.739223I
a = 0.70712 + 2.78319I
b = 1.41856 + 3.03717I
15.9851 + 3.3273I 13.99686 0.12457I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.806281
a = 1.15429
b = 0.930683
19.2190 14.0620
u = 0.803779 + 0.892292I
a = 1.76637 + 2.05694I
b = 0.41562 + 3.22944I
6.89324 + 3.01130I 13.76983 2.67964I
u = 0.803779 0.892292I
a = 1.76637 2.05694I
b = 0.41562 3.22944I
6.89324 3.01130I 13.76983 + 2.67964I
u = 0.745691 + 0.953776I
a = 0.209775 + 0.092781I
b = 0.244919 + 0.130892I
3.50610 5.81808I 10.51658 + 5.66339I
u = 0.745691 0.953776I
a = 0.209775 0.092781I
b = 0.244919 0.130892I
3.50610 + 5.81808I 10.51658 5.66339I
u = 0.784642 + 1.031280I
a = 2.58208 1.12211I
b = 0.86881 3.54329I
16.8999 + 9.5713I 12.72981 4.75135I
u = 0.784642 1.031280I
a = 2.58208 + 1.12211I
b = 0.86881 + 3.54329I
16.8999 9.5713I 12.72981 + 4.75135I
u = 0.216278 + 0.660670I
a = 0.396693 + 1.247630I
b = 0.738473 0.531917I
1.26262 0.98137I 9.38815 + 0.54437I
u = 0.216278 0.660670I
a = 0.396693 1.247630I
b = 0.738473 + 0.531917I
1.26262 + 0.98137I 9.38815 0.54437I
u = 0.325708
a = 1.13099
b = 0.368372
0.688798 14.5570
6
II. I
u
2
= hu
7
+ u
5
+ 2u
3
+ u
2
+ b + u, u
6
+ u
4
+ 2u
2
+ a + u + 1, u
9
u
8
+
2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
12
=
u
2
+ 1
u
2
a
3
=
u
6
u
4
2u
2
u 1
u
7
u
5
2u
3
u
2
u
a
5
=
u
u
3
+ u
a
2
=
u
6
u
4
2u
2
2u 1
u
7
u
5
3u
3
u
2
2u
a
1
=
u
u
3
u
a
4
=
u
6
u
4
2u
2
u 1
u
7
u
5
2u
3
u
2
u
a
9
=
u
4
+ u
2
+ 1
u
4
a
7
=
u
8
u
6
u
4
+ 1
u
8
+ u
7
u
6
+ 2u
5
u
4
+ 2u
3
+ 2u + 1
a
8
=
u
8
u
6
u
4
+ 1
u
8
+ u
7
u
6
+ 2u
5
u
4
+ 2u
3
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
4u
6
+ 3u
5
3u
4
+ 6u
3
3u
2
u 13
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
7
u
9
c
4
(u + 1)
9
c
5
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
6
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
8
, c
12
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
9
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
10
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
11
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
7
y
9
c
5
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
6
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
8
, c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
9
, c
11
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 0.770941 0.258974I
b = 0.142194 + 0.781734I
0.13850 + 2.09337I 6.69021 3.87975I
u = 0.140343 0.966856I
a = 0.770941 + 0.258974I
b = 0.142194 0.781734I
0.13850 2.09337I 6.69021 + 3.87975I
u = 0.628449 + 0.875112I
a = 0.147409 0.367985I
b = 0.229389 + 0.360259I
2.26187 + 2.45442I 12.49381 3.35442I
u = 0.628449 0.875112I
a = 0.147409 + 0.367985I
b = 0.229389 0.360259I
2.26187 2.45442I 12.49381 + 3.35442I
u = 0.796005 + 0.733148I
a = 0.24323 1.73417I
b = 1.07779 1.55873I
6.01628 + 1.33617I 13.53709 1.22905I
u = 0.796005 0.733148I
a = 0.24323 + 1.73417I
b = 1.07779 + 1.55873I
6.01628 1.33617I 13.53709 + 1.22905I
u = 0.728966 + 0.986295I
a = 1.62529 0.46000I
b = 0.73109 1.93833I
5.24306 7.08493I 12.02676 + 6.64241I
u = 0.728966 0.986295I
a = 1.62529 + 0.46000I
b = 0.73109 + 1.93833I
5.24306 + 7.08493I 12.02676 6.64241I
u = 0.512358
a = 1.09967
b = 0.563422
2.84338 14.5040
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
20
+ 42u
19
+ ··· + 23u + 1)
c
2
((u 1)
9
)(u
20
10u
19
+ ··· + 5u 1)
c
3
, c
7
u
9
(u
20
u
19
+ ··· + 512u + 512)
c
4
((u + 1)
9
)(u
20
10u
19
+ ··· + 5u 1)
c
5
(u
9
+ u
8
+ ··· + u 1)(u
20
+ 2u
19
+ ··· 3u 1)
c
6
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
20
10u
19
+ ··· + 85u 43)
c
8
, c
12
(u
9
u
8
+ ··· u + 1)(u
20
+ 2u
19
+ ··· 3u 1)
c
9
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
20
6u
19
+ ··· + 3u + 1)
c
10
(u
9
u
8
+ ··· + u + 1)(u
20
+ 2u
19
+ ··· 3u 1)
c
11
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
20
6u
19
+ ··· + 3u + 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
20
198y
19
+ ··· 639y + 1)
c
2
, c
4
((y 1)
9
)(y
20
42y
19
+ ··· 23y + 1)
c
3
, c
7
y
9
(y
20
57y
19
+ ··· + 1310720y + 262144)
c
5
, c
10
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
20
+ 6y
19
+ ··· 3y + 1)
c
6
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
20
18y
19
+ ··· 4731y + 1849)
c
8
, c
12
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
20
42y
19
+ ··· 3y + 1)
c
9
, c
11
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
20
+ 18y
19
+ ··· 91y + 1)
12