12n
0173
(K12n
0173
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 12 11 3 6 5 8 9 10
Solving Sequence
6,11 3,7
8 9 12 5 2 4 10 1
c
6
c
7
c
8
c
11
c
5
c
2
c
4
c
10
c
12
c
1
, c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.58032 × 10
67
u
39
+ 2.06674 × 10
67
u
38
+ ··· + 9.73803 × 10
65
b 1.02729 × 10
69
,
5.45075 × 10
69
u
39
3.75387 × 10
69
u
38
+ ··· + 1.65547 × 10
67
a + 1.34484 × 10
71
, u
40
4u
38
+ ··· + 97u + 17i
I
u
2
= h9.27676 × 10
169
u
45
2.27749 × 10
170
u
44
+ ··· + 9.75406 × 10
172
b + 4.16059 × 10
173
,
9.42080 × 10
173
u
45
2.43360 × 10
174
u
44
+ ··· + 2.48046 × 10
176
a + 3.47623 × 10
177
,
u
46
2u
45
+ ··· + 9446u + 2543i
I
u
3
= hu
3
+ 3u
2
+ 4b + 2u + 1, 3u
3
u
2
+ 4a 2u + 5, u
4
+ u
2
u + 1i
I
u
4
= h−4u
14
2u
13
+ ··· + b 5,
2u
14
u
13
+ 5u
12
3u
11
10u
10
+ 11u
9
+ 10u
8
14u
7
3u
6
+ 14u
5
+ u
4
8u
3
+ u
2
+ a + 3u 1,
u
15
3u
13
+ 3u
12
+ 5u
11
9u
10
3u
9
+ 12u
8
2u
7
11u
6
+ 4u
5
+ 7u
4
5u
3
2u
2
+ 3u 1i
I
u
5
= h−u
5
u
4
2u
3
2u
2
+ b u 1, u
5
2u
3
u
2
+ a 2u 2, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
* 5 irreducible components of dim
C
= 0, with total 111 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.58 × 10
67
u
39
+ 2.07 × 10
67
u
38
+ · · · + 9.74 × 10
65
b 1.03 ×
10
69
, 5.45 × 10
69
u
39
3.75 × 10
69
u
38
+ · · · + 1.66 × 10
67
a + 1.34 ×
10
71
, u
40
4u
38
+ · · · + 97u + 17i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
329.258u
39
+ 226.756u
38
+ ··· 34572.1u 8123.67
36.7664u
39
21.2234u
38
+ ··· + 4276.56u + 1054.93
a
7
=
1
u
2
a
8
=
79.7827u
39
+ 49.4021u
38
+ ··· 8924.80u 2162.21
83.0595u
39
+ 59.0553u
38
+ ··· 8544.73u 1992.63
a
9
=
162.842u
39
+ 108.457u
38
+ ··· 17469.5u 4154.84
83.0595u
39
+ 59.0553u
38
+ ··· 8544.73u 1992.63
a
12
=
398.430u
39
+ 268.461u
38
+ ··· 42420.9u 10043.8
83.0595u
39
+ 59.0553u
38
+ ··· 8544.73u 1992.63
a
5
=
8.75622u
39
10.8797u
38
+ ··· + 451.374u + 56.6766
120.738u
39
+ 80.3482u
38
+ ··· 12927.2u 3059.02
a
2
=
90.2726u
39
+ 62.6721u
38
+ ··· 9459.34u 2231.28
87.9281u
39
59.6344u
38
+ ··· + 9289.11u + 2178.55
a
4
=
136.341u
39
97.9644u
38
+ ··· + 13897.5u + 3213.89
122.755u
39
+ 78.6483u
38
+ ··· 13489.8u 3244.38
a
10
=
151.962u
39
+ 97.3994u
38
+ ··· 16676.8u 4005.99
163.408u
39
+ 112.006u
38
+ ··· 17197.3u 4045.18
a
1
=
107.859u
39
+ 79.5764u
38
+ ··· 10793.0u 2477.92
152.528u
39
100.948u
38
+ ··· + 16405.7u + 3896.33
(ii) Obstruction class = 1
(iii) Cusp Shapes = 185.230u
39
+ 123.975u
38
+ ··· 19743.3u 4644.59
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
40
+ 41u
39
+ ··· + 8641u + 256
c
2
, c
4
u
40
7u
39
+ ··· 81u + 16
c
3
, c
7
u
40
5u
39
+ ··· + 1632u + 256
c
5
, c
8
u
40
+ u
39
+ ··· + 2u + 1
c
6
, c
9
u
40
4u
38
+ ··· 97u + 17
c
10
, c
12
u
40
+ 4u
39
+ ··· 3u + 1
c
11
u
40
+ 25u
39
+ ··· + 36u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
40
77y
39
+ ··· 6662529y + 65536
c
2
, c
4
y
40
41y
39
+ ··· 8641y + 256
c
3
, c
7
y
40
+ 27y
39
+ ··· 226304y + 65536
c
5
, c
8
y
40
+ 17y
39
+ ··· + 40y + 1
c
6
, c
9
y
40
8y
39
+ ··· 4275y + 289
c
10
, c
12
y
40
40y
39
+ ··· 15y + 1
c
11
y
40
y
39
+ ··· + 1144y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.916795 + 0.271284I
a = 0.07185 2.25689I
b = 0.886132 0.556013I
4.61460 + 4.21677I 10.36400 7.96016I
u = 0.916795 0.271284I
a = 0.07185 + 2.25689I
b = 0.886132 + 0.556013I
4.61460 4.21677I 10.36400 + 7.96016I
u = 0.257747 + 1.059350I
a = 1.51427 + 1.70732I
b = 2.53555 1.59062I
2.65950 + 0.01537I 10.44302 + 0.45727I
u = 0.257747 1.059350I
a = 1.51427 1.70732I
b = 2.53555 + 1.59062I
2.65950 0.01537I 10.44302 0.45727I
u = 0.773206 + 0.447559I
a = 0.294992 0.155460I
b = 1.237270 + 0.037085I
1.37570 + 6.93076I 8.7508 11.5757I
u = 0.773206 0.447559I
a = 0.294992 + 0.155460I
b = 1.237270 0.037085I
1.37570 6.93076I 8.7508 + 11.5757I
u = 0.843869 + 0.116958I
a = 0.699504 + 0.268479I
b = 0.806806 + 0.392167I
6.65685 1.58265I 10.51643 + 4.50982I
u = 0.843869 0.116958I
a = 0.699504 0.268479I
b = 0.806806 0.392167I
6.65685 + 1.58265I 10.51643 4.50982I
u = 0.742457 + 0.416076I
a = 1.13504 + 1.53730I
b = 0.146732 0.117931I
10.74610 + 5.03761I 8.95297 0.57470I
u = 0.742457 0.416076I
a = 1.13504 1.53730I
b = 0.146732 + 0.117931I
10.74610 5.03761I 8.95297 + 0.57470I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.596745 + 1.034040I
a = 0.0958413 0.0250611I
b = 0.457567 0.044691I
1.35612 + 7.74333I 9.28204 10.17690I
u = 0.596745 1.034040I
a = 0.0958413 + 0.0250611I
b = 0.457567 + 0.044691I
1.35612 7.74333I 9.28204 + 10.17690I
u = 0.515825 + 1.095850I
a = 0.699738 + 0.145025I
b = 0.618119 0.598353I
5.33600 3.23521I 0
u = 0.515825 1.095850I
a = 0.699738 0.145025I
b = 0.618119 + 0.598353I
5.33600 + 3.23521I 0
u = 0.297740 + 0.729548I
a = 0.726912 0.545199I
b = 0.205553 + 0.589406I
0.08293 1.53752I 0.71639 + 4.76389I
u = 0.297740 0.729548I
a = 0.726912 + 0.545199I
b = 0.205553 0.589406I
0.08293 + 1.53752I 0.71639 4.76389I
u = 0.594134 + 0.510868I
a = 0.461994 + 0.161353I
b = 0.337579 0.191190I
1.25513 1.56952I 2.17390 + 4.23177I
u = 0.594134 0.510868I
a = 0.461994 0.161353I
b = 0.337579 + 0.191190I
1.25513 + 1.56952I 2.17390 4.23177I
u = 1.178420 + 0.383003I
a = 0.27016 + 1.72025I
b = 0.672757 + 0.873454I
11.7135 + 8.0385I 13.2209 9.1027I
u = 1.178420 0.383003I
a = 0.27016 1.72025I
b = 0.672757 0.873454I
11.7135 8.0385I 13.2209 + 9.1027I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.668836 + 0.264877I
a = 0.282272 + 1.160020I
b = 0.135893 0.315911I
1.90192 + 1.40153I 6.20748 1.19828I
u = 0.668836 0.264877I
a = 0.282272 1.160020I
b = 0.135893 + 0.315911I
1.90192 1.40153I 6.20748 + 1.19828I
u = 0.679465 + 0.012974I
a = 0.90700 2.42772I
b = 0.690272 + 0.025224I
4.35694 + 0.92822I 9.14930 + 0.28573I
u = 0.679465 0.012974I
a = 0.90700 + 2.42772I
b = 0.690272 0.025224I
4.35694 0.92822I 9.14930 0.28573I
u = 0.423175 + 0.521589I
a = 1.35188 + 1.41277I
b = 1.03242 1.13997I
2.35252 + 0.61317I 4.61633 + 3.05486I
u = 0.423175 0.521589I
a = 1.35188 1.41277I
b = 1.03242 + 1.13997I
2.35252 0.61317I 4.61633 3.05486I
u = 0.663180 + 0.080866I
a = 0.505742 + 0.206401I
b = 1.384640 0.132216I
2.64301 + 1.48294I 4.81453 + 7.72547I
u = 0.663180 0.080866I
a = 0.505742 0.206401I
b = 1.384640 + 0.132216I
2.64301 1.48294I 4.81453 7.72547I
u = 1.31926 + 0.81503I
a = 0.254068 1.123980I
b = 2.08311 0.15702I
5.42435 5.89974I 0
u = 1.31926 0.81503I
a = 0.254068 + 1.123980I
b = 2.08311 + 0.15702I
5.42435 + 5.89974I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.33509 + 1.00004I
a = 0.103766 + 0.191805I
b = 1.191910 + 0.700889I
7.28442 + 9.37900I 0
u = 1.33509 1.00004I
a = 0.103766 0.191805I
b = 1.191910 0.700889I
7.28442 9.37900I 0
u = 1.64955 + 0.34859I
a = 0.041797 + 0.918280I
b = 1.41260 + 0.58964I
14.3131 1.3284I 0
u = 1.64955 0.34859I
a = 0.041797 0.918280I
b = 1.41260 0.58964I
14.3131 + 1.3284I 0
u = 1.25011 + 1.13972I
a = 0.537152 + 1.115220I
b = 2.58218 + 0.30646I
4.50733 12.55940I 0
u = 1.25011 1.13972I
a = 0.537152 1.115220I
b = 2.58218 0.30646I
4.50733 + 12.55940I 0
u = 0.82513 + 1.61273I
a = 0.619679 0.520496I
b = 2.49695 + 0.94026I
10.55600 + 0.42655I 0
u = 0.82513 1.61273I
a = 0.619679 + 0.520496I
b = 2.49695 0.94026I
10.55600 0.42655I 0
u = 1.25209 + 1.40579I
a = 0.710628 0.936920I
b = 2.76309 0.57698I
11.2981 17.8760I 0
u = 1.25209 1.40579I
a = 0.710628 + 0.936920I
b = 2.76309 + 0.57698I
11.2981 + 17.8760I 0
8
II. I
u
2
= h9.28 × 10
169
u
45
2.28 × 10
170
u
44
+ · · · + 9.75 × 10
172
b + 4.16 ×
10
173
, 9.42 × 10
173
u
45
2.43 × 10
174
u
44
+ · · · + 2.48 × 10
176
a + 3.48 ×
10
177
, u
46
2u
45
+ · · · + 9446u + 2543i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
0.00379801u
45
+ 0.00981109u
44
+ ··· 43.1222u 14.0145
0.000951066u
45
+ 0.00233492u
44
+ ··· 8.80677u 4.26549
a
7
=
1
u
2
a
8
=
0.000716237u
45
0.00105546u
44
+ ··· + 4.58476u + 9.05145
0.00144541u
45
0.00363803u
44
+ ··· + 12.3847u + 6.56682
a
9
=
0.00216165u
45
0.00469349u
44
+ ··· + 16.9695u + 15.6183
0.00144541u
45
0.00363803u
44
+ ··· + 12.3847u + 6.56682
a
12
=
0.00398318u
45
+ 0.00931129u
44
+ ··· 34.5587u 20.7912
0.000496329u
45
+ 0.000994531u
44
+ ··· 6.30884u 5.67547
a
5
=
0.00412015u
45
0.0103795u
44
+ ··· + 41.9047u + 14.6677
0.000976621u
45
0.00236780u
44
+ ··· + 11.0461u + 5.89430
a
2
=
0.00289423u
45
+ 0.00709969u
44
+ ··· 29.5330u 10.4974
0.000537120u
45
+ 0.00126553u
44
+ ··· 6.34240u 3.78873
a
4
=
0.00382997u
45
0.00995571u
44
+ ··· + 40.6638u + 12.6470
0.00116221u
45
0.00292917u
44
+ ··· + 9.48770u + 4.47069
a
10
=
0.00461706u
45
+ 0.0113680u
44
+ ··· 34.2999u 16.9762
0.00113021u
45
0.00305123u
44
+ ··· + 8.04999u + 1.86051
a
1
=
0.00527624u
45
+ 0.0130113u
44
+ ··· 46.7854u 17.7735
0.000580431u
45
0.00159375u
44
+ ··· + 1.15606u 0.758198
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00495504u
45
0.00970261u
44
+ ··· + 38.8323u + 37.7445
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
23
+ 26u
22
+ ··· 7u + 1)
2
c
2
, c
4
(u
23
4u
22
+ ··· 3u 1)
2
c
3
, c
7
(u
23
+ 3u
22
+ ··· + 36u 8)
2
c
5
, c
8
u
46
+ 6u
45
+ ··· + 116u + 17
c
6
, c
9
u
46
+ 2u
45
+ ··· 9446u + 2543
c
10
, c
12
u
46
3u
44
+ ··· 76140u + 32521
c
11
(u
23
10u
22
+ ··· + 4u
2
+ 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
23
54y
22
+ ··· 215y 1)
2
c
2
, c
4
(y
23
26y
22
+ ··· 7y 1)
2
c
3
, c
7
(y
23
+ 21y
22
+ ··· 48y 64)
2
c
5
, c
8
y
46
10y
45
+ ··· + 3136y + 289
c
6
, c
9
y
46
10y
45
+ ··· 111757896y + 6466849
c
10
, c
12
y
46
6y
45
+ ··· + 636394872y + 1057615441
c
11
(y
23
+ 20y
21
+ ··· 8y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.938998 + 0.344976I
a = 2.24368 + 0.34394I
b = 2.40240 0.99716I
1.23158 3.46001I 0.93966 + 11.94434I
u = 0.938998 0.344976I
a = 2.24368 0.34394I
b = 2.40240 + 0.99716I
1.23158 + 3.46001I 0.93966 11.94434I
u = 0.381487 + 0.925362I
a = 0.036904 0.397055I
b = 0.308362 + 0.632471I
0.22577 2.35596I 1.37102 + 5.00512I
u = 0.381487 0.925362I
a = 0.036904 + 0.397055I
b = 0.308362 0.632471I
0.22577 + 2.35596I 1.37102 5.00512I
u = 0.662967 + 0.741919I
a = 0.882738 + 0.492316I
b = 0.019759 + 1.137980I
0.22577 2.35596I 1.37102 + 5.00512I
u = 0.662967 0.741919I
a = 0.882738 0.492316I
b = 0.019759 1.137980I
0.22577 + 2.35596I 1.37102 5.00512I
u = 0.776430 + 0.599101I
a = 0.64174 1.41107I
b = 0.331275 + 0.637663I
9.93186 + 9.38993I 5.00822 8.89816I
u = 0.776430 0.599101I
a = 0.64174 + 1.41107I
b = 0.331275 0.637663I
9.93186 9.38993I 5.00822 + 8.89816I
u = 0.347658 + 0.962709I
a = 0.094250 0.137661I
b = 0.617430 + 0.174037I
3.29942 11.64034 + 0.I
u = 0.347658 0.962709I
a = 0.094250 + 0.137661I
b = 0.617430 0.174037I
3.29942 11.64034 + 0.I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.363894 + 0.859272I
a = 0.961328 0.913318I
b = 0.081085 + 0.409837I
0.07682 4.67687I 2.82043 + 11.56965I
u = 0.363894 0.859272I
a = 0.961328 + 0.913318I
b = 0.081085 0.409837I
0.07682 + 4.67687I 2.82043 11.56965I
u = 0.576444 + 0.916663I
a = 3.57574 + 2.35289I
b = 3.83467 + 2.38953I
1.23158 + 3.46001I 0.93966 11.94434I
u = 0.576444 0.916663I
a = 3.57574 2.35289I
b = 3.83467 2.38953I
1.23158 3.46001I 0.93966 + 11.94434I
u = 0.091395 + 1.210170I
a = 0.143737 + 0.825821I
b = 0.195131 + 0.246758I
6.90053 6.33030I 5.55743 + 6.60020I
u = 0.091395 1.210170I
a = 0.143737 0.825821I
b = 0.195131 0.246758I
6.90053 + 6.33030I 5.55743 6.60020I
u = 0.642034 + 0.452369I
a = 0.21983 + 1.87152I
b = 1.23526 0.94866I
4.25470 + 2.83401I 16.2136 5.6542I
u = 0.642034 0.452369I
a = 0.21983 1.87152I
b = 1.23526 + 0.94866I
4.25470 2.83401I 16.2136 + 5.6542I
u = 0.669574 + 1.086330I
a = 0.208906 0.373689I
b = 0.927797 + 0.477174I
0.78715 2.82758I 2.28819 1.37730I
u = 0.669574 1.086330I
a = 0.208906 + 0.373689I
b = 0.927797 0.477174I
0.78715 + 2.82758I 2.28819 + 1.37730I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.046560 + 0.783431I
a = 0.59848 1.43771I
b = 1.59045 + 0.05140I
12.8626 + 6.8428I 11.21020 4.32033I
u = 1.046560 0.783431I
a = 0.59848 + 1.43771I
b = 1.59045 0.05140I
12.8626 6.8428I 11.21020 + 4.32033I
u = 0.625428 + 0.116207I
a = 0.714645 + 0.198843I
b = 1.353840 0.397532I
5.87167 + 0.65487I 18.5419 8.9539I
u = 0.625428 0.116207I
a = 0.714645 0.198843I
b = 1.353840 + 0.397532I
5.87167 0.65487I 18.5419 + 8.9539I
u = 0.548542 + 0.193866I
a = 0.45786 + 1.86963I
b = 0.184586 1.004710I
2.99002 + 3.94578I 4.9106 15.5031I
u = 0.548542 0.193866I
a = 0.45786 1.86963I
b = 0.184586 + 1.004710I
2.99002 3.94578I 4.9106 + 15.5031I
u = 1.24048 + 0.78112I
a = 0.03322 1.87174I
b = 3.56571 0.92903I
0.07682 + 4.67687I 0. 11.56965I
u = 1.24048 0.78112I
a = 0.03322 + 1.87174I
b = 3.56571 + 0.92903I
0.07682 4.67687I 0. + 11.56965I
u = 0.467204 + 0.217984I
a = 1.94284 + 2.82388I
b = 0.202604 0.456157I
4.75468 2.62879I 2.77736 + 1.99528I
u = 0.467204 0.217984I
a = 1.94284 2.82388I
b = 0.202604 + 0.456157I
4.75468 + 2.62879I 2.77736 1.99528I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428413 + 0.172818I
a = 3.71471 1.22148I
b = 0.621273 1.245390I
0.78715 + 2.82758I 2.28819 + 1.37730I
u = 0.428413 0.172818I
a = 3.71471 + 1.22148I
b = 0.621273 + 1.245390I
0.78715 2.82758I 2.28819 1.37730I
u = 0.35071 + 1.65209I
a = 0.0912328 + 0.0808853I
b = 0.29070 1.43919I
4.75468 2.62879I 0
u = 0.35071 1.65209I
a = 0.0912328 0.0808853I
b = 0.29070 + 1.43919I
4.75468 + 2.62879I 0
u = 1.85979 + 1.16230I
a = 0.246221 + 0.939586I
b = 3.32130 + 1.56395I
6.90053 + 6.33030I 0
u = 1.85979 1.16230I
a = 0.246221 0.939586I
b = 3.32130 1.56395I
6.90053 6.33030I 0
u = 1.70741 + 1.40554I
a = 0.358502 + 0.842210I
b = 3.51166 + 1.04732I
4.25470 + 2.83401I 0
u = 1.70741 1.40554I
a = 0.358502 0.842210I
b = 3.51166 1.04732I
4.25470 2.83401I 0
u = 1.43109 + 1.69613I
a = 0.593848 + 0.717598I
b = 3.15094 + 0.70927I
9.93186 9.38993I 0
u = 1.43109 1.69613I
a = 0.593848 0.717598I
b = 3.15094 0.70927I
9.93186 + 9.38993I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.76806 + 1.35630I
a = 0.392722 0.812608I
b = 2.93041 1.33454I
2.99002 3.94578I 0
u = 1.76806 1.35630I
a = 0.392722 + 0.812608I
b = 2.93041 + 1.33454I
2.99002 + 3.94578I 0
u = 2.24798 + 0.96891I
a = 0.049286 0.718312I
b = 3.40524 1.44518I
12.8626 + 6.8428I 0
u = 2.24798 0.96891I
a = 0.049286 + 0.718312I
b = 3.40524 + 1.44518I
12.8626 6.8428I 0
u = 1.91392 + 1.52870I
a = 0.405621 0.097399I
b = 1.62062 2.87145I
5.87167 + 0.65487I 0
u = 1.91392 1.52870I
a = 0.405621 + 0.097399I
b = 1.62062 + 2.87145I
5.87167 0.65487I 0
16
III. I
u
3
= hu
3
+ 3u
2
+ 4b + 2u + 1, 3u
3
u
2
+ 4a 2u + 5, u
4
+ u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
3
4
u
3
+
1
4
u
2
+
1
2
u
5
4
1
4
u
3
3
4
u
2
1
2
u
1
4
a
7
=
1
u
2
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
u
3
+ u
2
u
2
a
5
=
u
3
u
2
+ u 1
a
2
=
7
4
u
3
+
1
4
u
2
+
1
2
u
5
4
1
4
u
3
+
1
4
u
2
3
2
u +
3
4
a
4
=
3
4
u
3
+
1
4
u
2
+
1
2
u
5
4
1
4
u
3
3
4
u
2
1
2
u
1
4
a
10
=
u
u
3
+ u
a
1
=
u
3
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
39
16
u
3
+
77
16
u
2
+
19
8
u
149
16
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
6
u
4
+ u
2
u + 1
c
8
u
4
2u
3
+ 3u
2
u + 1
c
9
, c
10
, c
12
u
4
+ u
2
+ u + 1
c
11
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
8
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
6
, c
9
, c
10
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
11
y
4
y
3
+ 2y
2
+ 7y + 4
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 1.28654 + 0.69736I
b = 0.391417 0.855136I
2.62503 1.39709I 9.19395 + 5.27044I
u = 0.547424 0.585652I
a = 1.28654 0.69736I
b = 0.391417 + 0.855136I
2.62503 + 1.39709I 9.19395 5.27044I
u = 0.547424 + 1.120870I
a = 0.338459 0.046758I
b = 0.266417 + 0.460085I
0.98010 + 7.64338I 10.58730 4.22005I
u = 0.547424 1.120870I
a = 0.338459 + 0.046758I
b = 0.266417 0.460085I
0.98010 7.64338I 10.58730 + 4.22005I
20
IV.
I
u
4
= h−4u
14
2u
13
+· · ·+b5, 2u
14
u
13
+· · ·+a1, u
15
3u
13
+· · ·+3u1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
2u
14
+ u
13
+ ··· 3u + 1
4u
14
+ 2u
13
+ ··· 11u + 5
a
7
=
1
u
2
a
8
=
u
u
14
+ 3u
12
+ ··· + 2u 3
a
9
=
u
14
+ 3u
12
+ ··· + 3u 3
u
14
+ 3u
12
+ ··· + 2u 3
a
12
=
u
14
3u
12
+ ··· 4u + 3
u
14
3u
12
+ ··· 2u + 3
a
5
=
3u
14
+ u
13
+ ··· 11u + 6
3u
14
+ u
13
+ ··· 11u + 7
a
2
=
2u
14
6u
12
+ ··· 6u + 4
3u
14
+ u
13
+ ··· 9u + 6
a
4
=
5u
14
+ 3u
13
+ ··· 13u + 5
4u
14
+ 2u
13
+ ··· 14u + 7
a
10
=
u
3
0
a
1
=
u
14
3u
12
+ ··· 4u + 3
u
14
3u
12
+ ··· 2u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
14
12u
13
+ 18u
12
+ 3u
11
57u
10
+ 9u
9
+ 81u
8
23u
7
69u
6
+ 49u
5
+ 71u
4
33u
3
20u
2
+ 30u 2
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
14u
14
+ ··· + 27u 1
c
2
u
15
+ 4u
14
+ ··· + 5u 1
c
3
u
15
2u
14
+ ··· + u 1
c
4
u
15
4u
14
+ ··· + 5u + 1
c
5
, c
8
u
15
3u
14
+ ··· + 3u
2
1
c
6
, c
9
u
15
3u
13
+ ··· + 3u 1
c
7
u
15
+ 2u
14
+ ··· + u + 1
c
10
, c
12
u
15
+ 6u
14
+ ··· + 5u + 1
c
11
u
15
9u
14
+ ··· 3u
2
+ 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
22y
14
+ ··· + 247y 1
c
2
, c
4
y
15
14y
14
+ ··· + 27y 1
c
3
, c
7
y
15
+ 6y
14
+ ··· 21y 1
c
5
, c
8
y
15
5y
14
+ ··· + 6y 1
c
6
, c
9
y
15
6y
14
+ ··· + 5y 1
c
10
, c
12
y
15
+ 2y
14
+ ··· 15y 1
c
11
y
15
y
14
+ ··· + 6y 1
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.705269 + 0.671023I
a = 1.91716 4.45800I
b = 4.32167 + 1.98193I
0.66574 + 3.66922I 23.4278 4.1308I
u = 0.705269 0.671023I
a = 1.91716 + 4.45800I
b = 4.32167 1.98193I
0.66574 3.66922I 23.4278 + 4.1308I
u = 0.705292 + 0.773370I
a = 1.49935 0.52629I
b = 0.711264 1.062020I
0.41822 3.68052I 1.64123 + 6.14138I
u = 0.705292 0.773370I
a = 1.49935 + 0.52629I
b = 0.711264 + 1.062020I
0.41822 + 3.68052I 1.64123 6.14138I
u = 1.095560 + 0.159935I
a = 0.03742 1.42622I
b = 0.305259 0.223093I
3.30273 + 3.15661I 6.01525 3.84939I
u = 1.095560 0.159935I
a = 0.03742 + 1.42622I
b = 0.305259 + 0.223093I
3.30273 3.15661I 6.01525 + 3.84939I
u = 1.13479
a = 0.0880681
b = 1.41713
5.52469 6.90180
u = 0.655711 + 0.316603I
a = 0.319019 0.248033I
b = 1.361690 0.044903I
2.79458 1.83819I 3.69149 + 10.41016I
u = 0.655711 0.316603I
a = 0.319019 + 0.248033I
b = 1.361690 + 0.044903I
2.79458 + 1.83819I 3.69149 10.41016I
u = 0.713404 + 1.059640I
a = 0.846522 + 0.167681I
b = 0.686002 0.092107I
5.32622 4.02081I 6.72360 + 8.77622I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.713404 1.059640I
a = 0.846522 0.167681I
b = 0.686002 + 0.092107I
5.32622 + 4.02081I 6.72360 8.77622I
u = 0.461092 + 0.464467I
a = 0.605558 + 0.197442I
b = 1.113150 + 0.171029I
1.69267 6.59893I 3.21319 + 0.18543I
u = 0.461092 0.464467I
a = 0.605558 0.197442I
b = 1.113150 0.171029I
1.69267 + 6.59893I 3.21319 0.18543I
u = 1.302070 + 0.416047I
a = 0.224921 + 1.360520I
b = 0.561688 + 0.716944I
10.94270 + 7.51080I 5.14589 4.08277I
u = 1.302070 0.416047I
a = 0.224921 1.360520I
b = 0.561688 0.716944I
10.94270 7.51080I 5.14589 + 4.08277I
25
V. I
u
5
= h−u
5
u
4
2u
3
2u
2
+ b u 1, u
5
2u
3
u
2
+ a 2u
2, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
5
+ 2u
3
+ u
2
+ 2u + 2
u
5
+ u
4
+ 2u
3
+ 2u
2
+ u + 1
a
7
=
1
u
2
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
u
5
+ 2u
3
+ u
u
5
+ u
3
+ u
a
5
=
2u
5
3u
3
u
2
2u 1
2u
5
u
4
3u
3
2u
2
3u 2
a
2
=
3u
5
+ 5u
3
+ 2u
2
+ 4u + 3
3u
5
+ 2u
4
+ 5u
3
+ 4u
2
+ 4u + 3
a
4
=
u
5
+ 2u
3
+ u
2
+ 2u + 2
u
5
+ u
4
+ 2u
3
+ 2u
2
+ u + 1
a
10
=
u
u
3
+ u
a
1
=
2u
5
+ 3u
3
+ u
2
+ 2u + 1
2u
5
+ u
4
+ 3u
3
+ 2u
2
+ 3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
+ 2u
3
+ u
2
+ 2u 3
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
6
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
8
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
9
, c
10
, c
12
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
11
(u
3
u
2
+ 1)
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
8
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
6
, c
9
, c
10
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
11
(y
3
y
2
+ 2y 1)
2
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.78492 + 1.30714I
b = 1.89744 0.20118I
1.37919 2.82812I 4.21508 + 1.30714I
u = 0.498832 1.001300I
a = 0.78492 1.30714I
b = 1.89744 + 0.20118I
1.37919 + 2.82812I 4.21508 1.30714I
u = 0.284920 + 1.115140I
a = 0.430160
b = 0.500000 0.273346I
2.75839 4.56984 + 0.I
u = 0.284920 1.115140I
a = 0.430160
b = 0.500000 + 0.273346I
2.75839 4.56984 + 0.I
u = 0.713912 + 0.305839I
a = 0.78492 + 1.30714I
b = 0.897438 + 0.201182I
1.37919 2.82812I 4.21508 + 1.30714I
u = 0.713912 0.305839I
a = 0.78492 1.30714I
b = 0.897438 0.201182I
1.37919 + 2.82812I 4.21508 1.30714I
29
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
15
14u
14
+ ··· + 27u 1)(u
23
+ 26u
22
+ ··· 7u + 1)
2
· (u
40
+ 41u
39
+ ··· + 8641u + 256)
c
2
((u 1)
10
)(u
15
+ 4u
14
+ ··· + 5u 1)(u
23
4u
22
+ ··· 3u 1)
2
· (u
40
7u
39
+ ··· 81u + 16)
c
3
u
10
(u
15
2u
14
+ ··· + u 1)(u
23
+ 3u
22
+ ··· + 36u 8)
2
· (u
40
5u
39
+ ··· + 1632u + 256)
c
4
((u + 1)
10
)(u
15
4u
14
+ ··· + 5u + 1)(u
23
4u
22
+ ··· 3u 1)
2
· (u
40
7u
39
+ ··· 81u + 16)
c
5
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
15
3u
14
+ ··· + 3u
2
1)(u
40
+ u
39
+ ··· + 2u + 1)
· (u
46
+ 6u
45
+ ··· + 116u + 17)
c
6
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
15
3u
13
+ ··· + 3u 1)(u
40
4u
38
+ ··· 97u + 17)
· (u
46
+ 2u
45
+ ··· 9446u + 2543)
c
7
u
10
(u
15
+ 2u
14
+ ··· + u + 1)(u
23
+ 3u
22
+ ··· + 36u 8)
2
· (u
40
5u
39
+ ··· + 1632u + 256)
c
8
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
15
3u
14
+ ··· + 3u
2
1)(u
40
+ u
39
+ ··· + 2u + 1)
· (u
46
+ 6u
45
+ ··· + 116u + 17)
c
9
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
15
3u
13
+ ··· + 3u 1)(u
40
4u
38
+ ··· 97u + 17)
· (u
46
+ 2u
45
+ ··· 9446u + 2543)
c
10
, c
12
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
15
+ 6u
14
+ ··· + 5u + 1)(u
40
+ 4u
39
+ ··· 3u + 1)
· (u
46
3u
44
+ ··· 76140u + 32521)
c
11
((u
3
u
2
+ 1)
2
)(u
4
+ 3u
3
+ ··· + 3u + 2)(u
15
9u
14
+ ··· 3u
2
+ 1)
· ((u
23
10u
22
+ ··· + 4u
2
+ 1)
2
)(u
40
+ 25u
39
+ ··· + 36u + 4)
30
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
15
22y
14
+ ··· + 247y 1)
· (y
23
54y
22
+ ··· 215y 1)
2
· (y
40
77y
39
+ ··· 6662529y + 65536)
c
2
, c
4
((y 1)
10
)(y
15
14y
14
+ ··· + 27y 1)(y
23
26y
22
+ ··· 7y 1)
2
· (y
40
41y
39
+ ··· 8641y + 256)
c
3
, c
7
y
10
(y
15
+ 6y
14
+ ··· 21y 1)(y
23
+ 21y
22
+ ··· 48y 64)
2
· (y
40
+ 27y
39
+ ··· 226304y + 65536)
c
5
, c
8
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
15
5y
14
+ ··· + 6y 1)(y
40
+ 17y
39
+ ··· + 40y + 1)
· (y
46
10y
45
+ ··· + 3136y + 289)
c
6
, c
9
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
15
6y
14
+ ··· + 5y 1)(y
40
8y
39
+ ··· 4275y + 289)
· (y
46
10y
45
+ ··· 111757896y + 6466849)
c
10
, c
12
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
15
+ 2y
14
+ ··· 15y 1)(y
40
40y
39
+ ··· 15y + 1)
· (y
46
6y
45
+ ··· + 636394872y + 1057615441)
c
11
((y
3
y
2
+ 2y 1)
2
)(y
4
y
3
+ 2y
2
+ 7y + 4)(y
15
y
14
+ ··· + 6y 1)
· ((y
23
+ 20y
21
+ ··· 8y 1)
2
)(y
40
y
39
+ ··· + 1144y + 16)
31