12n
0175
(K12n
0175
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 12 11 4 6 5 8 9 10
Solving Sequence
3,8 4,10
11 7 6 9 12 1 5 2
c
3
c
10
c
7
c
6
c
8
c
11
c
12
c
5
c
2
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.04267 × 10
26
u
13
2.24065 × 10
27
u
12
+ ··· + 1.09231 × 10
29
b + 2.46093 × 10
28
,
1.28732 × 10
26
u
13
2.92904 × 10
27
u
12
+ ··· + 2.18462 × 10
29
a 1.14504 × 10
29
,
u
14
+ 21u
13
+ ··· + 544u + 256i
I
u
2
= h−102u
8
440u
7
440u
6
655u
5
+ u
4
240u
3
+ 269u
2
+ 59b 180u + 261,
15u
8
30u
7
+ 88u
6
+ 72u
5
+ 283u
4
+ 107u
3
+ 253u
2
+ 59a + 36u + 172,
u
9
+ 5u
8
+ 8u
7
+ 13u
6
+ 10u
5
+ 11u
4
+ 5u
3
+ 6u
2
+ u + 1i
I
u
3
= h−2u
5
a + 10u
4
a 2u
5
30u
3
a + 13u
4
+ 33u
2
a 45u
3
14au + 78u
2
+ 6b + 4a 62u + 28,
18u
5
a + 39u
5
+ ··· + 16a 220, u
6
7u
5
+ 26u
4
51u
3
+ 52u
2
28u + 8i
I
u
4
= h2u
2
b + b
2
bu + 4u
2
+ 4b 2u + 7, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
I
v
1
= ha, v
3
7v
2
+ 4b 12v 1, v
4
+ 7v
3
+ 16v
2
+ 13v + 4i
I
v
2
= ha, v
2
b + b
2
+ 2bv v
2
+ b + 2v + 1, v
3
3v
2
+ 2v 1i
* 6 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.04 × 10
26
u
13
2.24 × 10
27
u
12
+ · · · + 1.09 × 10
29
b + 2.46 ×
10
28
, 1.29 × 10
26
u
13
2.93 × 10
27
u
12
+ · · · + 2.18 × 10
29
a 1.15 ×
10
29
, u
14
+ 21u
13
+ · · · + 544u + 256i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
0.000589262u
13
+ 0.0134075u
12
+ ··· 0.805195u + 0.524136
0.000954555u
13
+ 0.0205129u
12
+ ··· + 0.318887u 0.225296
a
11
=
0.000589262u
13
+ 0.0134075u
12
+ ··· 0.805195u + 0.524136
0.000671621u
13
+ 0.0148039u
12
+ ··· 0.393936u 0.489753
a
7
=
u
u
3
+ u
a
6
=
0.00121747u
13
+ 0.0251618u
12
+ ··· + 2.10350u + 0.0491900
0.000115085u
13
+ 0.00299760u
12
+ ··· + 0.828767u 0.0553136
a
9
=
0.00122256u
13
+ 0.0260104u
12
+ ··· + 0.0388506u + 0.499449
0.000709347u
13
+ 0.0153553u
12
+ ··· + 0.361561u 0.145546
a
12
=
0.000261393u
13
+ 0.00718595u
12
+ ··· 1.58109u + 0.503456
0.00106954u
13
+ 0.0235741u
12
+ ··· 0.362940u 0.280603
a
1
=
0.000424271u
13
+ 0.00989082u
12
+ ··· 0.674232u + 0.474041
0.0000149496u
13
+ 0.00111721u
12
+ ··· 0.559577u 0.359209
a
5
=
0.000409321u
13
0.00877361u
12
+ ··· + 0.114654u 0.833250
0.0000359381u
13
+ 0.00108264u
12
+ ··· 0.358027u 0.313673
a
2
=
0.000409321u
13
+ 0.00877361u
12
+ ··· 0.114654u + 0.833250
0.0000149496u
13
+ 0.00111721u
12
+ ··· 0.559577u 0.359209
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00674689u
13
0.136707u
12
+ ··· 11.6248u 11.8608
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 54u
13
+ ··· 7647u + 256
c
2
, c
4
u
14
16u
13
+ ··· + 31u 16
c
3
, c
7
u
14
+ 21u
13
+ ··· + 544u + 256
c
5
, c
8
u
14
+ 2u
13
+ ··· + 4u + 1
c
6
, c
9
u
14
11u
13
+ ··· + 9u 9
c
10
, c
12
u
14
+ 27u
13
+ ··· + 157u 1
c
11
u
14
+ 22u
13
+ ··· + 88u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
910y
13
+ ··· 40412737y + 65536
c
2
, c
4
y
14
54y
13
+ ··· + 7647y + 256
c
3
, c
7
y
14
177y
13
+ ··· 226304y + 65536
c
5
, c
8
y
14
2y
13
+ ··· 6y + 1
c
6
, c
9
y
14
61y
13
+ ··· 927y + 81
c
10
, c
12
y
14
413y
13
+ ··· 22155y + 1
c
11
y
14
64y
13
+ ··· 2456y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.126413 + 1.064170I
a = 0.0178207 0.1327570I
b = 0.073229 + 0.409880I
2.38888 + 2.31349I 1.040974 + 0.185703I
u = 0.126413 1.064170I
a = 0.0178207 + 0.1327570I
b = 0.073229 0.409880I
2.38888 2.31349I 1.040974 0.185703I
u = 0.594510 + 0.411375I
a = 0.944868 + 0.799301I
b = 0.88821 + 1.42199I
3.64308 + 0.88750I 15.9778 + 0.0604I
u = 0.594510 0.411375I
a = 0.944868 0.799301I
b = 0.88821 1.42199I
3.64308 0.88750I 15.9778 0.0604I
u = 1.40610 + 0.22467I
a = 0.307958 + 1.309810I
b = 0.030088 + 0.287966I
0.10775 7.50729I 7.28452 + 4.95143I
u = 1.40610 0.22467I
a = 0.307958 1.309810I
b = 0.030088 0.287966I
0.10775 + 7.50729I 7.28452 4.95143I
u = 0.560428
a = 0.0120122
b = 0.522964
1.12206 9.20330
u = 0.345517 + 0.363205I
a = 1.121570 + 0.274743I
b = 0.330774 + 0.391733I
0.921235 + 1.059300I 5.51258 4.57245I
u = 0.345517 0.363205I
a = 1.121570 0.274743I
b = 0.330774 0.391733I
0.921235 1.059300I 5.51258 + 4.57245I
u = 1.80958 + 2.11291I
a = 1.248730 0.134703I
b = 2.16984 + 0.05278I
19.0076 + 14.9612I 6.21836 5.88234I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.80958 2.11291I
a = 1.248730 + 0.134703I
b = 2.16984 0.05278I
19.0076 14.9612I 6.21836 + 5.88234I
u = 3.79852 + 1.13400I
a = 1.41552 + 0.05510I
b = 2.07852 + 0.02544I
18.1348 0.1387I 2.93027 + 5.79154I
u = 3.79852 1.13400I
a = 1.41552 0.05510I
b = 2.07852 0.02544I
18.1348 + 0.1387I 2.93027 5.79154I
u = 12.2807
a = 1.54847
b = 2.18693
17.8723 0
6
II. I
u
2
= h−102u
8
440u
7
+ · · · + 59b + 261, 15u
8
30u
7
+ · · · + 59a +
172, u
9
+ 5u
8
+ · · · + u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
0.254237u
8
+ 0.508475u
7
+ ··· 0.610169u 2.91525
1.72881u
8
+ 7.45763u
7
+ ··· + 3.05085u 4.42373
a
11
=
0.254237u
8
+ 0.508475u
7
+ ··· 0.610169u 2.91525
2.01695u
8
+ 9.03390u
7
+ ··· + 3.55932u 3.66102
a
7
=
u
u
3
+ u
a
6
=
1.08475u
8
6.16949u
7
+ ··· 4.79661u 2.69492
0.593220u
8
4.18644u
7
+ ··· 3.57627u 4.86441
a
9
=
0.491525u
8
+ 1.98305u
7
+ ··· + 1.22034u 2.16949
2.38983u
8
+ 10.7797u
7
+ ··· + 5.86441u 3.20339
a
12
=
1.23729u
8
6.47458u
7
+ ··· 7.83051u 1.74576
2.74576u
8
14.4915u
7
+ ··· 13.6102u 4.91525
a
1
=
0.491525u
8
+ 1.98305u
7
+ ··· 0.779661u 1.16949
0.0677966u
8
+ 0.135593u
7
+ ··· 0.762712u 1.64407
a
5
=
0.423729u
8
+ 1.84746u
7
+ ··· 0.0169492u + 0.474576
0.254237u
8
0.508475u
7
+ ··· + 0.610169u + 1.91525
a
2
=
0.423729u
8
+ 1.84746u
7
+ ··· 0.0169492u + 0.474576
0.0677966u
8
+ 0.135593u
7
+ ··· 0.762712u 1.64407
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
142
59
u
8
+
756
59
u
7
+
1287
59
u
6
+
1997
59
u
5
+
2096
59
u
4
+
1528
59
u
3
+
1554
59
u
2
+
792
59
u +
480
59
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
10u
8
+ 29u
7
39u
6
+ 26u
5
15u
4
+ 19u
3
8u
2
3u 1
c
2
u
9
+ 4u
8
+ 3u
7
5u
6
10u
5
5u
4
+ 3u
3
+ 6u
2
+ 3u + 1
c
3
u
9
+ 5u
8
+ 8u
7
+ 13u
6
+ 10u
5
+ 11u
4
+ 5u
3
+ 6u
2
+ u + 1
c
4
u
9
4u
8
+ 3u
7
+ 5u
6
10u
5
+ 5u
4
+ 3u
3
6u
2
+ 3u 1
c
5
, c
8
u
9
3u
8
+ 5u
7
4u
6
+ 2u
5
2u
4
+ 4u
3
3u
2
+ 1
c
6
, c
9
u
9
3u
7
+ 4u
6
2u
5
+ 2u
4
4u
3
+ 5u
2
3u + 1
c
7
u
9
5u
8
+ 8u
7
13u
6
+ 10u
5
11u
4
+ 5u
3
6u
2
+ u 1
c
10
, c
12
u
9
+ 6u
8
+ 5u
7
+ 12u
6
+ 6u
5
+ 10u
4
+ 5u
2
u + 1
c
11
u
9
3u
8
7u
7
+ 61u
6
171u
5
+ 279u
4
297u
3
+ 212u
2
97u + 23
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
42y
8
+ ··· 7y 1
c
2
, c
4
y
9
10y
8
+ 29y
7
39y
6
+ 26y
5
15y
4
+ 19y
3
8y
2
3y 1
c
3
, c
7
y
9
9y
8
46y
7
109y
6
164y
5
171y
4
113y
3
48y
2
11y 1
c
5
, c
8
y
9
+ y
8
+ 5y
7
+ 10y
5
6y
4
+ 12y
3
5y
2
+ 6y 1
c
6
, c
9
y
9
6y
8
+ 5y
7
12y
6
+ 6y
5
10y
4
5y
2
y 1
c
10
, c
12
y
9
26y
8
+ ··· 9y 1
c
11
y
9
23y
8
+ ··· 343y 529
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.699225 + 0.881171I
a = 0.153901 0.439956I
b = 0.480829 0.332872I
1.28188 + 7.91801I 11.0500 9.5481I
u = 0.699225 0.881171I
a = 0.153901 + 0.439956I
b = 0.480829 + 0.332872I
1.28188 7.91801I 11.0500 + 9.5481I
u = 0.293070 + 1.131440I
a = 0.518996 + 0.755920I
b = 0.365565 0.116422I
1.91580 3.10870I 3.25080 + 5.79361I
u = 0.293070 1.131440I
a = 0.518996 0.755920I
b = 0.365565 + 0.116422I
1.91580 + 3.10870I 3.25080 5.79361I
u = 0.355075 + 0.694524I
a = 0.776460 0.463249I
b = 0.258201 0.760917I
1.44595 4.09337I 1.10458 + 4.89395I
u = 0.355075 0.694524I
a = 0.776460 + 0.463249I
b = 0.258201 + 0.760917I
1.44595 + 4.09337I 1.10458 4.89395I
u = 0.046807 + 0.509508I
a = 2.11030 0.01768I
b = 3.48539 + 1.47690I
1.03199 3.67986I 3.16209 + 3.89016I
u = 0.046807 0.509508I
a = 2.11030 + 0.01768I
b = 3.48539 1.47690I
1.03199 + 3.67986I 3.16209 3.89016I
u = 3.63195
a = 1.50371
b = 2.14716
18.5451 22.5130
10
III. I
u
3
= h−2u
5
a 2u
5
+ · · · + 4a + 28, 18u
5
a + 39u
5
+ · · · + 16a
220, u
6
7u
5
+ 26u
4
51u
3
+ 52u
2
28u + 8i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
a
1
3
u
5
a +
1
3
u
5
+ ···
2
3
a
14
3
a
11
=
a
1
3
u
5
a +
1
3
u
5
+ ···
2
3
a
14
3
a
7
=
u
u
3
+ u
a
6
=
1
12
u
5
a
1
3
u
5
+ ··· 3a +
17
6
1
2
u
5
a
17
12
u
5
+ ···
10
3
a + 3
a
9
=
1
6
u
5
a +
1
12
u
5
+ ··· +
2
3
a
5
2
7
6
u
5
a +
7
12
u
5
+ ···
14
3
a
19
3
a
12
=
1
8
u
5
+
7
8
u
4
+ ···
13
2
u +
7
2
1
6
u
5
a
19
12
u
5
+ ···
8
3
a +
20
3
a
1
=
19
24
u
5
35
8
u
4
+ ··· +
35
3
u 3
2
3
u
5
11
3
u
4
+ ··· +
32
3
u
11
3
a
5
=
1
8
u
5
+
17
24
u
4
+ ··· u
2
3
1
2
u
5
17
6
u
4
+ ··· + 7u
7
3
a
2
=
1
8
u
5
17
24
u
4
+ ··· + u +
2
3
2
3
u
5
11
3
u
4
+ ··· +
32
3
u
11
3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
12
u
5
85
12
u
4
+ 21u
3
85
4
u
2
+
25
6
u
19
3
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 4u
5
+ 24u
4
+ 11u
3
+ 42u
2
11u + 1)
2
c
2
, c
4
(u
6
2u
5
+ 3u
3
+ 6u
2
u + 1)
2
c
3
, c
7
(u
6
7u
5
+ 26u
4
51u
3
+ 52u
2
28u + 8)
2
c
5
, c
8
u
12
+ 2u
11
+ ··· + 15u + 9
c
6
, c
9
u
12
6u
11
+ ··· 1017u + 603
c
10
, c
12
u
12
u
11
+ ··· 942u + 423
c
11
(u
6
u
5
+ 5u
3
4u + 8)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ 32y
5
+ 572y
4
+ 1985y
3
+ 2054y
2
37y + 1)
2
c
2
, c
4
(y
6
4y
5
+ 24y
4
11y
3
+ 42y
2
+ 11y + 1)
2
c
3
, c
7
(y
6
+ 3y
5
+ 66y
4
273y
3
+ 264y
2
+ 48y + 64)
2
c
5
, c
8
y
12
+ 16y
10
+ ··· + 189y + 81
c
6
, c
9
y
12
+ 16y
11
+ ··· + 402057y + 363609
c
10
, c
12
y
12
+ 29y
11
+ ··· 1840806y + 178929
c
11
(y
6
y
5
+ 10y
4
17y
3
+ 40y
2
16y + 64)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.375593 + 0.540780I
a = 0.486099 0.455368I
b = 0.834769 + 0.886986I
0.10873 + 3.16633I 6.33370 4.19720I
u = 0.375593 + 0.540780I
a = 0.92528 + 1.97320I
b = 0.226390 + 0.446346I
0.10873 + 3.16633I 6.33370 4.19720I
u = 0.375593 0.540780I
a = 0.486099 + 0.455368I
b = 0.834769 0.886986I
0.10873 3.16633I 6.33370 + 4.19720I
u = 0.375593 0.540780I
a = 0.92528 1.97320I
b = 0.226390 0.446346I
0.10873 3.16633I 6.33370 + 4.19720I
u = 1.391620 + 0.251770I
a = 0.698843 0.090535I
b = 2.07845 0.66940I
0.10873 3.16633I 5.66630 + 4.19720I
u = 1.391620 + 0.251770I
a = 0.09615 1.82357I
b = 0.112878 1.032920I
0.10873 3.16633I 5.66630 + 4.19720I
u = 1.391620 0.251770I
a = 0.698843 + 0.090535I
b = 2.07845 + 0.66940I
0.10873 + 3.16633I 5.66630 4.19720I
u = 1.391620 0.251770I
a = 0.09615 + 1.82357I
b = 0.112878 + 1.032920I
0.10873 + 3.16633I 5.66630 4.19720I
u = 1.73279 + 2.49487I
a = 1.070440 0.329156I
b = 2.03504 + 0.00711I
19.7392 6.3327I 6.00000 + 2.82663I
u = 1.73279 + 2.49487I
a = 1.186840 0.318891I
b = 1.96109 0.25888I
19.7392 6.3327I 6.00000 + 2.82663I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.73279 2.49487I
a = 1.070440 + 0.329156I
b = 2.03504 0.00711I
19.7392 + 6.3327I 6.00000 2.82663I
u = 1.73279 2.49487I
a = 1.186840 + 0.318891I
b = 1.96109 + 0.25888I
19.7392 + 6.3327I 6.00000 2.82663I
15
IV. I
u
4
= h2u
2
b + b
2
bu + 4u
2
+ 4b 2u + 7, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
u
2
+ u 2
b
a
11
=
u
2
+ u 2
b u
a
7
=
u
u
2
u + 1
a
6
=
u
2
+ b + 2
2u
2
b + 3u
2
+ b u + 5
a
9
=
u
2
b 1
bu + 2b + 1
a
12
=
u
2
+ u 2
b u
a
1
=
0
u
a
5
=
u
u
2
u + 1
a
2
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 7u 16
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
8
c
9
u
6
3u
5
+ 5u
4
5u
3
+ 5u
2
3u + 1
c
7
(u
3
+ u
2
+ 2u + 1)
2
c
10
, c
12
(u + 1)
6
c
11
u
6
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
6
, c
8
c
9
y
6
+ y
5
+ 5y
4
+ 9y
3
+ 5y
2
+ y + 1
c
10
, c
12
(y 1)
6
c
11
y
6
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 0.715080 0.241870I
1.37919 2.82812I 1.19557 + 4.65175I
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 0.254878 + 0.424452I
1.37919 2.82812I 1.19557 + 4.65175I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 0.715080 + 0.241870I
1.37919 + 2.82812I 1.19557 4.65175I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 0.254878 0.424452I
1.37919 + 2.82812I 1.19557 4.65175I
u = 0.569840
a = 1.75488
b = 2.03980 + 1.73159I
2.75839 14.6090
u = 0.569840
a = 1.75488
b = 2.03980 1.73159I
2.75839 14.6090
19
V. I
v
1
= ha, v
3
7v
2
+ 4b 12v 1, v
4
+ 7v
3
+ 16v
2
+ 13v + 4i
(i) Arc colorings
a
3
=
1
0
a
8
=
v
0
a
4
=
1
0
a
10
=
0
1
4
v
3
+
7
4
v
2
+ 3v +
1
4
a
11
=
v
3
+ 3v
2
+ v
1
4
v
3
+
7
4
v
2
+ 3v +
1
4
a
7
=
v
0
a
6
=
2v
3
+ 9v
2
+ 11v + 4
3
4
v
3
17
4
v
2
7v
11
4
a
9
=
v
3
3v
2
v
1
4
v
3
+
3
4
v
2
3
4
a
12
=
v
3
4
v
3
+
17
4
v
2
+ 7v +
7
4
a
1
=
v
1
a
5
=
v
1
a
2
=
v + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
51
16
v
3
217
16
v
2
83
4
v
311
16
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
6
u
4
+ u
2
u + 1
c
8
u
4
2u
3
+ 3u
2
u + 1
c
9
, c
10
, c
12
u
4
+ u
2
+ u + 1
c
11
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
8
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
6
, c
9
, c
10
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
11
y
4
y
3
+ 2y
2
+ 7y + 4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.600768 + 0.325640I
a = 0
b = 1.112690 + 0.371716I
2.62503 + 1.39709I 10.34643 2.46427I
v = 0.600768 0.325640I
a = 0
b = 1.112690 0.371716I
2.62503 1.39709I 10.34643 + 2.46427I
v = 2.89923 + 0.40053I
a = 0
b = 0.237691 0.353773I
0.98010 + 7.64338I 2.12768 8.80169I
v = 2.89923 0.40053I
a = 0
b = 0.237691 + 0.353773I
0.98010 7.64338I 2.12768 + 8.80169I
23
VI. I
v
2
= ha, v
2
b + b
2
+ 2bv v
2
+ b + 2v + 1, v
3
3v
2
+ 2v 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
v
0
a
4
=
1
0
a
10
=
0
b
a
11
=
v
2
b
b
a
7
=
v
0
a
6
=
v
2
b + bv v
2
+ 2v
v
2
b + 3bv v
2
b + 3v 1
a
9
=
v
2
b bv + b + v
bv + v
2
+ b 3v + 1
a
12
=
bv + v
2
2v + 1
v
2
+ 3v 2
a
1
=
bv + v
2
2v + 1
1
a
5
=
bv v
2
+ 2v 1
1
a
2
=
bv + v
2
2v + 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7v
2
13v 5
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
6
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
8
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
9
, c
10
, c
12
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
11
(u
3
u
2
+ 1)
2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
8
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
6
, c
9
, c
10
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
11
(y
3
y
2
+ 2y 1)
2
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.337641 + 0.562280I
a = 0
b = 0.960138 + 0.693124I
1.37919 + 2.82812I 10.80443 4.65175I
v = 0.337641 + 0.562280I
a = 0
b = 0.91730 1.43799I
1.37919 + 2.82812I 10.80443 4.65175I
v = 0.337641 0.562280I
a = 0
b = 0.960138 0.693124I
1.37919 2.82812I 10.80443 + 4.65175I
v = 0.337641 0.562280I
a = 0
b = 0.91730 + 1.43799I
1.37919 2.82812I 10.80443 + 4.65175I
v = 2.32472
a = 0
b = 0.122561 + 0.479689I
2.75839 2.60890
v = 2.32472
a = 0
b = 0.122561 0.479689I
2.75839 2.60890
27
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
(u
3
u
2
+ 2u 1)
2
· (u
6
+ 4u
5
+ 24u
4
+ 11u
3
+ 42u
2
11u + 1)
2
· (u
9
10u
8
+ 29u
7
39u
6
+ 26u
5
15u
4
+ 19u
3
8u
2
3u 1)
· (u
14
+ 54u
13
+ ··· 7647u + 256)
c
2
(u 1)
10
(u
3
+ u
2
1)
2
(u
6
2u
5
+ 3u
3
+ 6u
2
u + 1)
2
· (u
9
+ 4u
8
+ 3u
7
5u
6
10u
5
5u
4
+ 3u
3
+ 6u
2
+ 3u + 1)
· (u
14
16u
13
+ ··· + 31u 16)
c
3
u
10
(u
3
u
2
+ 2u 1)
2
(u
6
7u
5
+ 26u
4
51u
3
+ 52u
2
28u + 8)
2
· (u
9
+ 5u
8
+ 8u
7
+ 13u
6
+ 10u
5
+ 11u
4
+ 5u
3
+ 6u
2
+ u + 1)
· (u
14
+ 21u
13
+ ··· + 544u + 256)
c
4
(u + 1)
10
(u
3
u
2
+ 1)
2
(u
6
2u
5
+ 3u
3
+ 6u
2
u + 1)
2
· (u
9
4u
8
+ 3u
7
+ 5u
6
10u
5
+ 5u
4
+ 3u
3
6u
2
+ 3u 1)
· (u
14
16u
13
+ ··· + 31u 16)
c
5
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
3u
5
+ 5u
4
5u
3
+ 5u
2
3u + 1)
· (u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
9
3u
8
+ 5u
7
4u
6
+ 2u
5
2u
4
+ 4u
3
3u
2
+ 1)
· (u
12
+ 2u
11
+ ··· + 15u + 9)(u
14
+ 2u
13
+ ··· + 4u + 1)
c
6
(u
4
+ u
2
u + 1)(u
6
3u
5
+ 5u
4
5u
3
+ 5u
2
3u + 1)
· (u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
9
3u
7
+ 4u
6
2u
5
+ 2u
4
4u
3
+ 5u
2
3u + 1)
· (u
12
6u
11
+ ··· 1017u + 603)(u
14
11u
13
+ ··· + 9u 9)
c
7
u
10
(u
3
+ u
2
+ 2u + 1)
2
(u
6
7u
5
+ 26u
4
51u
3
+ 52u
2
28u + 8)
2
· (u
9
5u
8
+ 8u
7
13u
6
+ 10u
5
11u
4
+ 5u
3
6u
2
+ u 1)
· (u
14
+ 21u
13
+ ··· + 544u + 256)
c
8
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
6
3u
5
+ 5u
4
5u
3
+ 5u
2
3u + 1)
· (u
9
3u
8
+ 5u
7
4u
6
+ 2u
5
2u
4
+ 4u
3
3u
2
+ 1)
· (u
12
+ 2u
11
+ ··· + 15u + 9)(u
14
+ 2u
13
+ ··· + 4u + 1)
c
9
(u
4
+ u
2
+ u + 1)(u
6
3u
5
+ 5u
4
5u
3
+ 5u
2
3u + 1)
· (u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
9
3u
7
+ 4u
6
2u
5
+ 2u
4
4u
3
+ 5u
2
3u + 1)
· (u
12
6u
11
+ ··· 1017u + 603)(u
14
11u
13
+ ··· + 9u 9)
c
10
, c
12
(u + 1)
6
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
9
+ 6u
8
+ 5u
7
+ 12u
6
+ 6u
5
+ 10u
4
+ 5u
2
u + 1)
· (u
12
u
11
+ ··· 942u + 423)(u
14
+ 27u
13
+ ··· + 157u 1)
c
11
u
6
(u
3
u
2
+ 1)
2
(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)(u
6
u
5
+ 5u
3
4u + 8)
2
· (u
9
3u
8
7u
7
+ 61u
6
171u
5
+ 279u
4
297u
3
+ 212u
2
97u + 23)
· (u
14
+ 22u
13
+ ··· + 88u + 4)
28
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
(y
3
+ 3y
2
+ 2y 1)
2
· (y
6
+ 32y
5
+ 572y
4
+ 1985y
3
+ 2054y
2
37y + 1)
2
· (y
9
42y
8
+ ··· 7y 1)(y
14
910y
13
+ ··· 4.04127 × 10
7
y + 65536)
c
2
, c
4
(y 1)
10
(y
3
y
2
+ 2y 1)
2
· (y
6
4y
5
+ 24y
4
11y
3
+ 42y
2
+ 11y + 1)
2
· (y
9
10y
8
+ 29y
7
39y
6
+ 26y
5
15y
4
+ 19y
3
8y
2
3y 1)
· (y
14
54y
13
+ ··· + 7647y + 256)
c
3
, c
7
y
10
(y
3
+ 3y
2
+ 2y 1)
2
· (y
6
+ 3y
5
+ 66y
4
273y
3
+ 264y
2
+ 48y + 64)
2
· (y
9
9y
8
46y
7
109y
6
164y
5
171y
4
113y
3
48y
2
11y 1)
· (y
14
177y
13
+ ··· 226304y + 65536)
c
5
, c
8
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
6
+ y
5
+ 5y
4
+ 9y
3
+ 5y
2
+ y + 1)
· (y
9
+ y
8
+ 5y
7
+ 10y
5
6y
4
+ 12y
3
5y
2
+ 6y 1)
· (y
12
+ 16y
10
+ ··· + 189y + 81)(y
14
2y
13
+ ··· 6y + 1)
c
6
, c
9
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ y
5
+ 5y
4
+ 9y
3
+ 5y
2
+ y + 1)
· (y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
9
6y
8
+ 5y
7
12y
6
+ 6y
5
10y
4
5y
2
y 1)
· (y
12
+ 16y
11
+ ··· + 402057y + 363609)
· (y
14
61y
13
+ ··· 927y + 81)
c
10
, c
12
(y 1)
6
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
9
26y
8
+ ··· 9y 1)(y
12
+ 29y
11
+ ··· 1840806y + 178929)
· (y
14
413y
13
+ ··· 22155y + 1)
c
11
y
6
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
6
y
5
+ 10y
4
17y
3
+ 40y
2
16y + 64)
2
· (y
9
23y
8
+ ··· 343y 529)(y
14
64y
13
+ ··· 2456y + 16)
29