12n
0177
(K12n
0177
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 9 11 3 6 5 12 7 10
Solving Sequence
6,11 3,7
8 4 9 12 5 2 10 1
c
6
c
7
c
3
c
8
c
11
c
5
c
2
c
10
c
12
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h5.55413 × 10
18
u
43
1.55873 × 10
20
u
42
+ ··· + 7.63795 × 10
20
b + 1.57862 × 10
18
,
5.19595 × 10
20
u
43
8.80516 × 10
20
u
42
+ ··· + 7.63795 × 10
20
a + 1.42510 × 10
21
, u
44
+ 2u
43
+ ··· + u 1i
I
u
2
= hu
3
u
2
+ b + 1, u
4
u
2
+ a + 2u + 1, u
5
u
4
+ u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.55×10
18
u
43
1.56×10
20
u
42
+· · ·+7.64×10
20
b+1.58×10
18
, 5.20×
10
20
u
43
8.81×10
20
u
42
+· · ·+7.64×10
20
a+1.43×10
21
, u
44
+2u
43
+· · ·+u1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
0.680281u
43
+ 1.15282u
42
+ ··· + 2.62761u 1.86582
0.00727175u
43
+ 0.204078u
42
+ ··· + 1.80199u 0.00206682
a
7
=
1
u
2
a
8
=
0.380377u
43
+ 0.278454u
42
+ ··· 1.47705u + 0.357193
0.725562u
43
+ 1.09260u
42
+ ··· + 2.20628u 1.03029
a
4
=
0.157495u
43
+ 0.219673u
42
+ ··· + 2.88571u 1.49128
0.100370u
43
+ 0.294432u
42
+ ··· + 2.99466u 0.234008
a
9
=
0.345186u
43
0.814150u
42
+ ··· 3.68333u + 1.38748
0.725562u
43
+ 1.09260u
42
+ ··· + 2.20628u 1.03029
a
12
=
u
u
3
+ u
a
5
=
0.727339u
43
1.22924u
42
+ ··· + 0.506371u + 1.13240
0.0878881u
43
0.762349u
42
+ ··· 1.82252u + 0.614206
a
2
=
0.141633u
43
0.0701701u
42
+ ··· + 2.62190u 1.14094
0.0770011u
43
0.0103397u
42
+ ··· + 2.58613u 0.141084
a
10
=
u
3
u
5
u
3
+ u
a
1
=
u
5
u
u
7
+ u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2222195580300966085542
763794622492335702017
u
43
+
3198001597405456212425
763794622492335702017
u
42
+ ···
5752714676140583930170
763794622492335702017
u
8762178869972642405852
763794622492335702017
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
44
+ 46u
43
+ ··· + 113u + 1
c
2
, c
4
u
44
6u
43
+ ··· u 1
c
3
, c
7
u
44
u
43
+ ··· + 416u + 32
c
5
, c
8
, c
9
u
44
2u
43
+ ··· u 1
c
6
, c
11
u
44
2u
43
+ ··· u 1
c
10
, c
12
u
44
+ 18u
43
+ ··· + 7u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
44
90y
43
+ ··· 1337y + 1
c
2
, c
4
y
44
46y
43
+ ··· 113y + 1
c
3
, c
7
y
44
33y
43
+ ··· 42496y + 1024
c
5
, c
8
, c
9
y
44
+ 30y
43
+ ··· 7y + 1
c
6
, c
11
y
44
18y
43
+ ··· 7y + 1
c
10
, c
12
y
44
+ 18y
43
+ ··· 7y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.932256 + 0.333118I
a = 2.11928 + 0.73637I
b = 1.213880 + 0.113209I
3.19612 + 1.16436I 18.0367 4.2407I
u = 0.932256 0.333118I
a = 2.11928 0.73637I
b = 1.213880 0.113209I
3.19612 1.16436I 18.0367 + 4.2407I
u = 0.811966 + 0.606824I
a = 0.214198 0.517770I
b = 0.639085 0.323465I
1.69246 + 2.33995I 6.03512 4.58901I
u = 0.811966 0.606824I
a = 0.214198 + 0.517770I
b = 0.639085 + 0.323465I
1.69246 2.33995I 6.03512 + 4.58901I
u = 0.832515 + 0.488298I
a = 8.47385 3.13565I
b = 1.08225 8.34772I
0.05907 2.03841I 80.5474 19.3778I
u = 0.832515 0.488298I
a = 8.47385 + 3.13565I
b = 1.08225 + 8.34772I
0.05907 + 2.03841I 80.5474 + 19.3778I
u = 0.462434 + 0.927925I
a = 0.0471309 + 0.1087380I
b = 1.40403 + 0.74743I
2.93440 8.69141I 10.66822 + 4.32970I
u = 0.462434 0.927925I
a = 0.0471309 0.1087380I
b = 1.40403 0.74743I
2.93440 + 8.69141I 10.66822 4.32970I
u = 0.934426 + 0.187999I
a = 2.13830 + 1.36144I
b = 0.759161 + 0.468019I
1.48992 + 2.07213I 15.1717 3.4409I
u = 0.934426 0.187999I
a = 2.13830 1.36144I
b = 0.759161 0.468019I
1.48992 2.07213I 15.1717 + 3.4409I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.482142 + 0.949428I
a = 0.0877578 0.0008070I
b = 1.354460 + 0.278382I
6.98988 + 2.57441I 14.1642 0.9556I
u = 0.482142 0.949428I
a = 0.0877578 + 0.0008070I
b = 1.354460 0.278382I
6.98988 2.57441I 14.1642 + 0.9556I
u = 0.996393 + 0.394966I
a = 1.48606 0.29444I
b = 0.886377 + 0.223778I
3.65397 + 1.39656I 17.3361 0.7595I
u = 0.996393 0.394966I
a = 1.48606 + 0.29444I
b = 0.886377 0.223778I
3.65397 1.39656I 17.3361 + 0.7595I
u = 0.940835 + 0.551460I
a = 0.76026 1.52020I
b = 1.52495 0.13898I
1.36697 + 2.08215I 9.41465 2.27806I
u = 0.940835 0.551460I
a = 0.76026 + 1.52020I
b = 1.52495 + 0.13898I
1.36697 2.08215I 9.41465 + 2.27806I
u = 0.519753 + 0.965172I
a = 0.0449987 0.1105440I
b = 1.073030 0.166548I
2.51155 + 3.63795I 12.71077 3.32802I
u = 0.519753 0.965172I
a = 0.0449987 + 0.1105440I
b = 1.073030 + 0.166548I
2.51155 3.63795I 12.71077 + 3.32802I
u = 1.025600 + 0.460789I
a = 0.04638 1.42837I
b = 0.097152 + 0.226092I
3.18176 4.85577I 16.2664 + 7.5137I
u = 1.025600 0.460789I
a = 0.04638 + 1.42837I
b = 0.097152 0.226092I
3.18176 + 4.85577I 16.2664 7.5137I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.005340 + 0.543119I
a = 1.45241 1.16375I
b = 1.010000 + 0.655687I
1.71867 4.49690I 15.4552 + 5.1685I
u = 1.005340 0.543119I
a = 1.45241 + 1.16375I
b = 1.010000 0.655687I
1.71867 + 4.49690I 15.4552 5.1685I
u = 1.042980 + 0.576491I
a = 2.06544 1.02569I
b = 1.108870 + 0.723364I
0.96122 + 8.18685I 10.86677 8.84051I
u = 1.042980 0.576491I
a = 2.06544 + 1.02569I
b = 1.108870 0.723364I
0.96122 8.18685I 10.86677 + 8.84051I
u = 0.484164 + 0.645863I
a = 0.335926 + 0.386406I
b = 0.946963 0.737557I
2.57983 3.38804I 7.14865 + 3.85146I
u = 0.484164 0.645863I
a = 0.335926 0.386406I
b = 0.946963 + 0.737557I
2.57983 + 3.38804I 7.14865 3.85146I
u = 0.572656 + 0.492792I
a = 0.479357 + 0.261809I
b = 0.622384 0.489340I
0.415071 + 0.135386I 12.51812 0.53462I
u = 0.572656 0.492792I
a = 0.479357 0.261809I
b = 0.622384 + 0.489340I
0.415071 0.135386I 12.51812 + 0.53462I
u = 1.272740 + 0.019314I
a = 1.88935 0.59100I
b = 1.50663 0.34571I
9.39659 + 6.06487I 16.0679 3.3672I
u = 1.272740 0.019314I
a = 1.88935 + 0.59100I
b = 1.50663 + 0.34571I
9.39659 6.06487I 16.0679 + 3.3672I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.27574
a = 2.04286
b = 1.59279
13.6601 18.7020
u = 0.928890 + 0.877784I
a = 0.288927 + 0.058403I
b = 0.0255637 0.0518981I
9.64608 3.25423I 3.42401 + 0.I
u = 0.928890 0.877784I
a = 0.288927 0.058403I
b = 0.0255637 + 0.0518981I
9.64608 + 3.25423I 3.42401 + 0.I
u = 1.140930 + 0.668019I
a = 1.78965 + 0.99216I
b = 1.58220 0.85694I
5.0177 + 14.5388I 12.0000 8.1006I
u = 1.140930 0.668019I
a = 1.78965 0.99216I
b = 1.58220 + 0.85694I
5.0177 14.5388I 12.0000 + 8.1006I
u = 1.147110 + 0.679799I
a = 1.30957 + 1.19970I
b = 1.45466 0.44146I
9.05324 8.53642I 12.00000 + 5.03243I
u = 1.147110 0.679799I
a = 1.30957 1.19970I
b = 1.45466 + 0.44146I
9.05324 + 8.53642I 12.00000 5.03243I
u = 0.454054 + 0.487305I
a = 0.035389 0.728908I
b = 0.876425 + 0.512471I
2.46066 + 2.02868I 5.66385 3.37535I
u = 0.454054 0.487305I
a = 0.035389 + 0.728908I
b = 0.876425 0.512471I
2.46066 2.02868I 5.66385 + 3.37535I
u = 1.152990 + 0.700059I
a = 0.682516 + 1.130440I
b = 1.087850 0.088161I
4.49244 + 2.47578I 12.00000 + 0.I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.152990 0.700059I
a = 0.682516 1.130440I
b = 1.087850 + 0.088161I
4.49244 2.47578I 12.00000 + 0.I
u = 0.435796
a = 0.661080
b = 0.319506
0.646256 15.3650
u = 0.157314 + 0.396862I
a = 0.50192 + 2.61945I
b = 0.425511 + 0.468538I
1.15253 + 1.27543I 10.53847 1.56080I
u = 0.157314 0.396862I
a = 0.50192 2.61945I
b = 0.425511 0.468538I
1.15253 1.27543I 10.53847 + 1.56080I
9
II. I
u
2
= hu
3
u
2
+ b + 1, u
4
u
2
+ a + 2u + 1, u
5
u
4
+ u
2
+ u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
4
+ u
2
2u 1
u
3
+ u
2
1
a
7
=
1
u
2
a
8
=
1
u
2
a
4
=
u
4
+ u
2
2u 1
u
3
+ u
2
1
a
9
=
u
2
+ 1
u
2
a
12
=
u
u
3
+ u
a
5
=
u
4
u
2
+ 1
u
4
a
2
=
2u
4
+ 2u
2
2u 2
u
4
u
3
+ u
2
1
a
10
=
u
3
u
4
u
3
u
2
+ 1
a
1
=
u
4
+ u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
u
3
+ 6u
2
4u 15
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
7
u
5
c
4
(u + 1)
5
c
5
, c
10
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
6
u
5
u
4
+ u
2
+ u 1
c
8
, c
9
, c
12
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
11
u
5
+ u
4
u
2
+ u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
, c
8
, c
9
c
10
, c
12
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
c
6
, c
11
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.758138 + 0.584034I
a = 1.47956 1.63976I
b = 1.10636 1.69341I
0.17487 + 2.21397I 11.6350 8.8712I
u = 0.758138 0.584034I
a = 1.47956 + 1.63976I
b = 1.10636 + 1.69341I
0.17487 2.21397I 11.6350 + 8.8712I
u = 0.935538 + 0.903908I
a = 0.044146 0.313338I
b = 0.532511 + 0.056433I
9.31336 3.33174I 19.7758 + 5.0940I
u = 0.935538 0.903908I
a = 0.044146 + 0.313338I
b = 0.532511 0.056433I
9.31336 + 3.33174I 19.7758 5.0940I
u = 0.645200
a = 2.04741
b = 0.852303
2.52712 15.1780
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
44
+ 46u
43
+ ··· + 113u + 1)
c
2
((u 1)
5
)(u
44
6u
43
+ ··· u 1)
c
3
, c
7
u
5
(u
44
u
43
+ ··· + 416u + 32)
c
4
((u + 1)
5
)(u
44
6u
43
+ ··· u 1)
c
5
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)(u
44
2u
43
+ ··· u 1)
c
6
(u
5
u
4
+ u
2
+ u 1)(u
44
2u
43
+ ··· u 1)
c
8
, c
9
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
44
2u
43
+ ··· u 1)
c
10
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)(u
44
+ 18u
43
+ ··· + 7u + 1)
c
11
(u
5
+ u
4
u
2
+ u + 1)(u
44
2u
43
+ ··· u 1)
c
12
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
44
+ 18u
43
+ ··· + 7u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
44
90y
43
+ ··· 1337y + 1)
c
2
, c
4
((y 1)
5
)(y
44
46y
43
+ ··· 113y + 1)
c
3
, c
7
y
5
(y
44
33y
43
+ ··· 42496y + 1024)
c
5
, c
8
, c
9
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
44
+ 30y
43
+ ··· 7y + 1)
c
6
, c
11
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)(y
44
18y
43
+ ··· 7y + 1)
c
10
, c
12
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
44
+ 18y
43
+ ··· 7y + 1)
15