12n
0179
(K12n
0179
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 11 4 6 5 12 7 10
Solving Sequence
6,11 4,7
8 9 12 3 5 2 10 1
c
6
c
7
c
8
c
11
c
3
c
5
c
2
c
10
c
12
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.37190 × 10
18
u
22
7.99565 × 10
18
u
21
+ ··· + 2.02541 × 10
20
b 2.79533 × 10
20
,
4.59710 × 10
19
u
22
4.62744 × 10
20
u
21
+ ··· + 3.44319 × 10
21
a 1.63572 × 10
22
,
u
23
+ 2u
22
+ ··· + 52u + 17i
I
u
2
= h−5u
3
a
2
3a
2
u
2
+ 6u
3
a + 18a
2
u + 11u
2
a 4u
3
4a
2
29au 32u
2
+ 37b 10a + 7u + 19,
2u
3
a
2
+ 2a
2
u
2
u
3
a + a
3
+ a
2
u + 2u
3
2a
2
au + 3u
2
+ 4u + 2, u
4
u
2
+ 1i
I
u
3
= hu
3
u
2
+ b + 1, u
4
u
2
+ a + 2u + 1, u
5
u
4
+ u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.37 × 10
18
u
22
8.00 × 10
18
u
21
+ · · · + 2.03 × 10
20
b 2.80 ×
10
20
, 4.60 × 10
19
u
22
4.63 × 10
20
u
21
+ · · · + 3.44 × 10
21
a 1.64 ×
10
22
, u
23
+ 2u
22
+ · · · + 52u + 17i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
0.0133513u
22
+ 0.134394u
21
+ ··· 1.65131u + 4.75059
0.00677343u
22
+ 0.0394767u
21
+ ··· 0.213063u + 1.38013
a
7
=
1
u
2
a
8
=
0.415260u
22
0.446011u
21
+ ··· 13.3132u 7.56780
0.164479u
22
0.153676u
21
+ ··· 4.53967u 2.55254
a
9
=
0.250781u
22
0.292335u
21
+ ··· 8.77357u 5.01526
0.164479u
22
0.153676u
21
+ ··· 4.53967u 2.55254
a
12
=
u
u
3
+ u
a
3
=
0.158366u
22
0.0384582u
21
+ ··· 7.26516u + 1.53971
0.184168u
22
0.141177u
21
+ ··· 6.16412u 1.51976
a
5
=
0.191837u
22
+ 0.133885u
21
+ ··· + 5.40801u + 3.14823
0.0435720u
22
+ 0.0231293u
21
+ ··· + 1.06482u + 0.103017
a
2
=
0.0136483u
22
+ 0.162115u
21
+ ··· 1.72543u + 5.96673
0.0408799u
22
+ 0.00329935u
21
+ ··· 0.954342u + 0.923420
a
10
=
u
3
u
5
u
3
+ u
a
1
=
u
5
u
u
7
+ u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45183703312586503683
101270439284454752258
u
22
+
93456001880784428205
101270439284454752258
u
21
+ ··· +
880293744256233854306
50635219642227376129
u +
601972144725743861757
50635219642227376129
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ 28u
22
+ ··· 74u + 1
c
2
, c
4
u
23
10u
22
+ ··· + 22u 1
c
3
, c
7
u
23
u
22
+ ··· 64u 32
c
5
, c
8
, c
9
u
23
2u
22
+ ··· 238u 49
c
6
, c
11
u
23
2u
22
+ ··· + 52u 17
c
10
, c
12
u
23
+ 18u
22
+ ··· + 3418u + 289
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
104y
22
+ ··· 62214y 1
c
2
, c
4
y
23
28y
22
+ ··· 74y 1
c
3
, c
7
y
23
+ 21y
22
+ ··· + 37376y 1024
c
5
, c
8
, c
9
y
23
+ 30y
21
+ ··· + 31556y 2401
c
6
, c
11
y
23
18y
22
+ ··· + 3418y 289
c
10
, c
12
y
23
18y
22
+ ··· + 2928914y 83521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.030250 + 0.133808I
a = 0.762093 + 1.177250I
b = 0.359850 + 0.929573I
3.40068 2.08292I 6.94504 + 2.82033I
u = 1.030250 0.133808I
a = 0.762093 1.177250I
b = 0.359850 0.929573I
3.40068 + 2.08292I 6.94504 2.82033I
u = 0.901962 + 0.543040I
a = 4.80515 + 0.32829I
b = 2.51685 + 4.97104I
0.09172 2.05272I 13.5502 11.7426I
u = 0.901962 0.543040I
a = 4.80515 0.32829I
b = 2.51685 4.97104I
0.09172 + 2.05272I 13.5502 + 11.7426I
u = 0.774138 + 0.517283I
a = 0.187723 0.729816I
b = 0.888501 0.210493I
1.78208 + 2.09879I 0.37186 4.32801I
u = 0.774138 0.517283I
a = 0.187723 + 0.729816I
b = 0.888501 + 0.210493I
1.78208 2.09879I 0.37186 + 4.32801I
u = 0.987737 + 0.455591I
a = 0.000748 1.386780I
b = 0.203991 0.922058I
3.17947 + 4.60678I 8.98911 4.52953I
u = 0.987737 0.455591I
a = 0.000748 + 1.386780I
b = 0.203991 + 0.922058I
3.17947 4.60678I 8.98911 + 4.52953I
u = 0.751562
a = 0.430119
b = 0.215899
1.11111 8.83030
u = 0.913312 + 0.995998I
a = 0.455968 0.165528I
b = 0.0273478 + 0.1092730I
8.77314 3.60069I 8.75891 + 4.90863I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.913312 0.995998I
a = 0.455968 + 0.165528I
b = 0.0273478 0.1092730I
8.77314 + 3.60069I 8.75891 4.90863I
u = 0.29230 + 1.39423I
a = 0.306239 0.296422I
b = 0.27422 1.73853I
9.67128 5.78622I 6.43045 + 2.03811I
u = 0.29230 1.39423I
a = 0.306239 + 0.296422I
b = 0.27422 + 1.73853I
9.67128 + 5.78622I 6.43045 2.03811I
u = 0.312134 + 0.458419I
a = 0.517712 0.280214I
b = 0.099441 + 0.699809I
0.646445 1.161780I 6.90693 + 5.27856I
u = 0.312134 0.458419I
a = 0.517712 + 0.280214I
b = 0.099441 0.699809I
0.646445 + 1.161780I 6.90693 5.27856I
u = 1.34978 + 0.77312I
a = 0.81654 + 1.45288I
b = 0.50785 + 1.97781I
12.9726 + 13.2355I 7.13536 5.53565I
u = 1.34978 0.77312I
a = 0.81654 1.45288I
b = 0.50785 1.97781I
12.9726 13.2355I 7.13536 + 5.53565I
u = 0.377835
a = 3.52955
b = 0.965970
2.11000 0.409770
u = 1.59039 + 0.40688I
a = 0.35471 1.57413I
b = 0.18308 1.79179I
6.97074 + 4.93755I 7.69369 2.56266I
u = 1.59039 0.40688I
a = 0.35471 + 1.57413I
b = 0.18308 + 1.79179I
6.97074 4.93755I 7.69369 + 2.56266I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.78874
a = 0.851439
b = 0.299287
10.2305 8.74930
u = 1.81595 + 0.61002I
a = 0.714754 + 1.134980I
b = 0.13957 + 1.61563I
16.2453 1.7569I 8.47765 + 0.68383I
u = 1.81595 0.61002I
a = 0.714754 1.134980I
b = 0.13957 1.61563I
16.2453 + 1.7569I 8.47765 0.68383I
7
II.
I
u
2
= h−5u
3
a
2
+6u
3
a + · · · 10a + 19, 2u
3
a
2
u
3
a + · · · 2a
2
+2, u
4
u
2
+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
a
0.135135a
2
u
3
0.162162au
3
+ ··· + 0.270270a 0.513514
a
7
=
1
u
2
a
8
=
0.351351a
2
u
3
0.378378au
3
+ ··· + 0.297297a + 1.13514
u
3
a
9
=
0.351351a
2
u
3
0.378378au
3
+ ··· + 0.297297a + 1.13514
u
3
a
12
=
u
u
3
+ u
a
3
=
0.135135a
2
u
3
+ 0.162162au
3
+ ··· + 0.729730a + 0.513514
0.486486a
2
u
3
0.783784au
3
+ ··· 1.02703a + 0.351351
a
5
=
0.108108a
2
u
3
+ 0.270270au
3
+ ··· + 0.216216a + 1.18919
1
a
2
=
0.0270270a
2
u
3
+ 0.567568au
3
+ ··· + 0.0540541a + 1.29730
0.189189a
2
u
3
+ 0.0270270au
3
+ ··· 0.378378a + 0.918919
a
10
=
u
3
0
a
1
=
u
3
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
100
37
u
3
a
2
+
88
37
a
2
u
2
+
120
37
u
3
a+
64
37
a
2
u
76
37
u
2
a
80
37
u
3
80
37
a
2
136
37
au+
100
37
u
2
+
96
37
a+
140
37
u
212
37
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
4
c
2
(u
3
+ u
2
1)
4
c
3
, c
7
(u
6
3u
4
+ 2u
2
+ 1)
2
c
4
(u
3
u
2
+ 1)
4
c
5
, c
8
, c
9
(u
2
+ 1)
6
c
6
, c
11
(u
4
u
2
+ 1)
3
c
10
(u
2
u + 1)
6
c
12
(u
2
+ u + 1)
6
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 3y
2
+ 2y 1)
4
c
2
, c
4
(y
3
y
2
+ 2y 1)
4
c
3
, c
7
(y
3
3y
2
+ 2y + 1)
4
c
5
, c
8
, c
9
(y + 1)
12
c
6
, c
11
(y
2
y + 1)
6
c
10
, c
12
(y
2
+ y + 1)
6
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.611376 + 1.168210I
b = 0.60113 + 1.32865I
4.66906 + 0.79824I 2.49024 + 0.48465I
u = 0.866025 + 0.500000I
a = 0.86134 1.84069I
b = 0.14373 1.45121I
4.66906 4.85801I 2.49024 + 6.44355I
u = 0.866025 + 0.500000I
a = 0.38394 3.55957I
b = 3.27465 0.87744I
0.53148 2.02988I 9.01951 + 3.46410I
u = 0.866025 0.500000I
a = 0.611376 1.168210I
b = 0.60113 1.32865I
4.66906 0.79824I 2.49024 0.48465I
u = 0.866025 0.500000I
a = 0.86134 + 1.84069I
b = 0.14373 + 1.45121I
4.66906 + 4.85801I 2.49024 6.44355I
u = 0.866025 0.500000I
a = 0.38394 + 3.55957I
b = 3.27465 + 0.87744I
0.53148 + 2.02988I 9.01951 3.46410I
u = 0.866025 + 0.500000I
a = 0.801323 + 0.635627I
b = 0.356011 0.161073I
4.66906 0.79824I 2.49024 0.48465I
u = 0.866025 + 0.500000I
a = 0.306233 0.883547I
b = 0.388851 + 0.038512I
4.66906 + 4.85801I 2.49024 6.44355I
u = 0.866025 + 0.500000I
a = 1.37094 0.52003I
b = 0.235109 0.877439I
0.53148 + 2.02988I 9.01951 3.46410I
u = 0.866025 0.500000I
a = 0.801323 0.635627I
b = 0.356011 + 0.161073I
4.66906 + 0.79824I 2.49024 + 0.48465I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866025 0.500000I
a = 0.306233 + 0.883547I
b = 0.388851 0.038512I
4.66906 4.85801I 2.49024 + 6.44355I
u = 0.866025 0.500000I
a = 1.37094 + 0.52003I
b = 0.235109 + 0.877439I
0.53148 2.02988I 9.01951 + 3.46410I
12
III. I
u
3
= hu
3
u
2
+ b + 1, u
4
u
2
+ a + 2u + 1, u
5
u
4
+ u
2
+ u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
u
4
+ u
2
2u 1
u
3
+ u
2
1
a
7
=
1
u
2
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
u
u
3
+ u
a
3
=
u
4
+ u
2
2u 1
u
3
+ u
2
1
a
5
=
u
4
u
2
+ 1
u
4
a
2
=
2u
4
+ 2u
2
2u 2
u
4
u
3
+ u
2
1
a
10
=
u
3
u
4
u
3
u
2
+ 1
a
1
=
u
4
+ u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
4
+ u
3
+ 2u
2
4u 17
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
7
u
5
c
4
(u + 1)
5
c
5
, c
10
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
6
u
5
u
4
+ u
2
+ u 1
c
8
, c
9
, c
12
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
11
u
5
+ u
4
u
2
+ u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
, c
8
, c
9
c
10
, c
12
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
c
6
, c
11
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.758138 + 0.584034I
a = 1.47956 1.63976I
b = 1.10636 1.69341I
0.17487 + 2.21397I 6.59361 + 0.42541I
u = 0.758138 0.584034I
a = 1.47956 + 1.63976I
b = 1.10636 + 1.69341I
0.17487 2.21397I 6.59361 0.42541I
u = 0.935538 + 0.903908I
a = 0.044146 0.313338I
b = 0.532511 + 0.056433I
9.31336 3.33174I 3.61324 0.36944I
u = 0.935538 0.903908I
a = 0.044146 + 0.313338I
b = 0.532511 0.056433I
9.31336 + 3.33174I 3.61324 + 0.36944I
u = 0.645200
a = 2.04741
b = 0.852303
2.52712 20.0390
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
3
u
2
+ 2u 1)
4
(u
23
+ 28u
22
+ ··· 74u + 1)
c
2
((u 1)
5
)(u
3
+ u
2
1)
4
(u
23
10u
22
+ ··· + 22u 1)
c
3
, c
7
u
5
(u
6
3u
4
+ 2u
2
+ 1)
2
(u
23
u
22
+ ··· 64u 32)
c
4
((u + 1)
5
)(u
3
u
2
+ 1)
4
(u
23
10u
22
+ ··· + 22u 1)
c
5
((u
2
+ 1)
6
)(u
5
u
4
+ ··· + 3u 1)(u
23
2u
22
+ ··· 238u 49)
c
6
((u
4
u
2
+ 1)
3
)(u
5
u
4
+ u
2
+ u 1)(u
23
2u
22
+ ··· + 52u 17)
c
8
, c
9
((u
2
+ 1)
6
)(u
5
+ u
4
+ ··· + 3u + 1)(u
23
2u
22
+ ··· 238u 49)
c
10
(u
2
u + 1)
6
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)
· (u
23
+ 18u
22
+ ··· + 3418u + 289)
c
11
((u
4
u
2
+ 1)
3
)(u
5
+ u
4
u
2
+ u + 1)(u
23
2u
22
+ ··· + 52u 17)
c
12
(u
2
+ u + 1)
6
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
· (u
23
+ 18u
22
+ ··· + 3418u + 289)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
3
+ 3y
2
+ 2y 1)
4
(y
23
104y
22
+ ··· 62214y 1)
c
2
, c
4
((y 1)
5
)(y
3
y
2
+ 2y 1)
4
(y
23
28y
22
+ ··· 74y 1)
c
3
, c
7
y
5
(y
3
3y
2
+ 2y + 1)
4
(y
23
+ 21y
22
+ ··· + 37376y 1024)
c
5
, c
8
, c
9
(y + 1)
12
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
23
+ 30y
21
+ ··· + 31556y 2401)
c
6
, c
11
(y
2
y + 1)
6
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
· (y
23
18y
22
+ ··· + 3418y 289)
c
10
, c
12
(y
2
+ y + 1)
6
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
23
18y
22
+ ··· + 2928914y 83521)
18