12n
0180
(K12n
0180
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 12 4 6 5 1 6 11
Solving Sequence
6,12 4,7
8 9 3 5 2 11 1 10
c
6
c
7
c
8
c
3
c
5
c
2
c
11
c
12
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h8.59216 × 10
59
u
59
+ 7.11341 × 10
60
u
58
+ ··· + 2.71076 × 10
61
b + 6.33557 × 10
61
,
2.02586 × 10
62
u
59
3.30298 × 10
62
u
58
+ ··· + 4.60829 × 10
62
a 1.81464 × 10
63
,
u
60
+ 3u
59
+ ··· + 12u + 17i
I
u
2
= h−51u
3
a
2
+ 106u
3
a + ··· 80a 21,
2u
3
a
2
2a
2
u
2
+ u
3
a + a
3
+ a
2
u + 2u
2
a + 6u
3
+ 2a
2
3au + 9u
2
2a + 2u 2, u
4
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h8.59 × 10
59
u
59
+ 7.11 × 10
60
u
58
+ · · · + 2.71 × 10
61
b + 6.34 ×
10
61
, 2.03 × 10
62
u
59
3.30 × 10
62
u
58
+ · · · + 4.61 × 10
62
a 1.81 ×
10
63
, u
60
+ 3u
59
+ · · · + 12u + 17i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
4
=
0.439611u
59
+ 0.716748u
58
+ ··· 0.813297u + 3.93778
0.0316965u
59
0.262414u
58
+ ··· + 4.37519u 2.33720
a
7
=
1
u
2
a
8
=
0.0820681u
59
+ 0.302588u
58
+ ··· 10.8701u 5.50752
0.0713087u
59
0.287800u
58
+ ··· + 3.92724u + 1.83826
a
9
=
0.153377u
59
+ 0.590388u
58
+ ··· 14.7973u 7.34578
0.0713087u
59
0.287800u
58
+ ··· + 3.92724u + 1.83826
a
3
=
0.106413u
59
+ 0.119118u
58
+ ··· 4.94013u 3.96049
0.0147849u
59
+ 0.000149588u
58
+ ··· + 3.53440u + 4.49621
a
5
=
0.313827u
59
0.803067u
58
+ ··· + 2.00850u 0.850375
0.0119731u
59
0.0516958u
58
+ ··· + 2.55197u + 2.41305
a
2
=
0.111888u
59
+ 0.442512u
58
+ ··· 5.49722u 3.98640
0.0511739u
59
+ 0.197997u
58
+ ··· 3.04177u + 1.75645
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
u
5
u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.359408u
59
+ 0.109275u
58
+ ··· + 23.9102u + 7.48289
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
60
+ 35u
59
+ ··· + 64u + 1
c
2
, c
4
u
60
5u
59
+ ··· 16u + 1
c
3
, c
7
u
60
u
59
+ ··· 4u + 1
c
5
, c
8
, c
9
u
60
3u
59
+ ··· 154u + 49
c
6
, c
11
u
60
3u
59
+ ··· 12u + 17
c
10
, c
12
u
60
17u
59
+ ··· 2558u + 289
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
60
15y
59
+ ··· + 2064y + 1
c
2
, c
4
y
60
35y
59
+ ··· 64y + 1
c
3
, c
7
y
60
15y
59
+ ··· 40y + 1
c
5
, c
8
, c
9
y
60
+ 21y
59
+ ··· + 34104y + 2401
c
6
, c
11
y
60
17y
59
+ ··· 2558y + 289
c
10
, c
12
y
60
+ 59y
59
+ ··· 725794y + 83521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.929012 + 0.409111I
a = 3.04269 + 1.15379I
b = 2.59631 + 1.09970I
0.23119 + 1.94297I 2.05685 11.08290I
u = 0.929012 0.409111I
a = 3.04269 1.15379I
b = 2.59631 1.09970I
0.23119 1.94297I 2.05685 + 11.08290I
u = 0.832822 + 0.587944I
a = 1.21567 1.08428I
b = 0.069828 1.012120I
3.25865 + 0.70404I 1.90677 + 0.77167I
u = 0.832822 0.587944I
a = 1.21567 + 1.08428I
b = 0.069828 + 1.012120I
3.25865 0.70404I 1.90677 0.77167I
u = 0.004950 + 1.024030I
a = 0.183534 0.050087I
b = 0.740563 0.693298I
3.25466 4.08265I 4.68553 + 7.94094I
u = 0.004950 1.024030I
a = 0.183534 + 0.050087I
b = 0.740563 + 0.693298I
3.25466 + 4.08265I 4.68553 7.94094I
u = 0.822970 + 0.630204I
a = 1.54004 + 1.13008I
b = 0.133459 + 1.061150I
3.19637 5.46860I 1.43660 + 7.42023I
u = 0.822970 0.630204I
a = 1.54004 1.13008I
b = 0.133459 1.061150I
3.19637 + 5.46860I 1.43660 7.42023I
u = 0.809567 + 0.501021I
a = 5.62494 3.66221I
b = 0.98200 + 6.14395I
0.08137 + 2.05589I 27.6617 + 22.2084I
u = 0.809567 0.501021I
a = 5.62494 + 3.66221I
b = 0.98200 6.14395I
0.08137 2.05589I 27.6617 22.2084I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.006930 + 0.332122I
a = 1.315940 0.433014I
b = 0.99469 1.18965I
0.04819 3.77072I 0.50249 + 5.64131I
u = 1.006930 0.332122I
a = 1.315940 + 0.433014I
b = 0.99469 + 1.18965I
0.04819 + 3.77072I 0.50249 5.64131I
u = 1.079450 + 0.120285I
a = 1.043550 0.134913I
b = 0.563555 0.123402I
1.73585 0.04165I 7.02929 1.55117I
u = 1.079450 0.120285I
a = 1.043550 + 0.134913I
b = 0.563555 + 0.123402I
1.73585 + 0.04165I 7.02929 + 1.55117I
u = 0.931671 + 0.569277I
a = 0.339977 + 1.097140I
b = 0.986373 0.325235I
1.83197 2.08769I 7.31144 + 2.76134I
u = 0.931671 0.569277I
a = 0.339977 1.097140I
b = 0.986373 + 0.325235I
1.83197 + 2.08769I 7.31144 2.76134I
u = 1.085650 + 0.220553I
a = 2.03983 + 0.42897I
b = 1.19988 0.96562I
3.75827 + 4.28418I 7.39769 5.27258I
u = 1.085650 0.220553I
a = 2.03983 0.42897I
b = 1.19988 + 0.96562I
3.75827 4.28418I 7.39769 + 5.27258I
u = 0.758636 + 0.887275I
a = 0.340815 0.278642I
b = 0.78502 1.49028I
3.82130 + 3.76339I 0
u = 0.758636 0.887275I
a = 0.340815 + 0.278642I
b = 0.78502 + 1.49028I
3.82130 3.76339I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.802241 + 0.075713I
a = 2.17404 1.63873I
b = 0.323287 + 0.783361I
6.00487 2.27473I 9.19193 + 3.71392I
u = 0.802241 0.075713I
a = 2.17404 + 1.63873I
b = 0.323287 0.783361I
6.00487 + 2.27473I 9.19193 3.71392I
u = 0.879342 + 0.837979I
a = 0.176337 0.434177I
b = 0.073200 0.870222I
4.62872 + 2.55229I 0
u = 0.879342 0.837979I
a = 0.176337 + 0.434177I
b = 0.073200 + 0.870222I
4.62872 2.55229I 0
u = 0.715460 + 0.984773I
a = 0.344792 + 0.130176I
b = 1.03109 + 1.53314I
7.75605 + 9.32324I 0
u = 0.715460 0.984773I
a = 0.344792 0.130176I
b = 1.03109 1.53314I
7.75605 9.32324I 0
u = 0.830973 + 0.892744I
a = 1.215320 0.601098I
b = 0.180459 0.790574I
8.14977 1.83674I 0
u = 0.830973 0.892744I
a = 1.215320 + 0.601098I
b = 0.180459 + 0.790574I
8.14977 + 1.83674I 0
u = 0.792660 + 0.936246I
a = 0.092647 0.224921I
b = 0.210710 + 0.159454I
0.10426 3.90855I 0
u = 0.792660 0.936246I
a = 0.092647 + 0.224921I
b = 0.210710 0.159454I
0.10426 + 3.90855I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.929150 + 0.821763I
a = 1.301880 + 0.509111I
b = 0.142826 + 0.827123I
4.47334 + 3.63985I 0
u = 0.929150 0.821763I
a = 1.301880 0.509111I
b = 0.142826 0.827123I
4.47334 3.63985I 0
u = 0.880329 + 0.874378I
a = 0.520777 + 0.321136I
b = 0.56993 + 1.71766I
8.33406 1.51336I 0
u = 0.880329 0.874378I
a = 0.520777 0.321136I
b = 0.56993 1.71766I
8.33406 + 1.51336I 0
u = 0.703326 + 0.228376I
a = 1.271670 + 0.570807I
b = 0.813961 + 0.932874I
1.22817 0.90691I 4.10313 1.08221I
u = 0.703326 0.228376I
a = 1.271670 0.570807I
b = 0.813961 0.932874I
1.22817 + 0.90691I 4.10313 + 1.08221I
u = 1.228280 + 0.305750I
a = 1.68849 0.21445I
b = 1.32261 + 0.91261I
1.11802 + 8.63012I 0
u = 1.228280 0.305750I
a = 1.68849 + 0.21445I
b = 1.32261 0.91261I
1.11802 8.63012I 0
u = 0.945860 + 0.847488I
a = 1.70802 0.90011I
b = 0.58276 1.79431I
8.12673 4.86921I 0
u = 0.945860 0.847488I
a = 1.70802 + 0.90011I
b = 0.58276 + 1.79431I
8.12673 + 4.86921I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.986055 + 0.828942I
a = 0.073132 + 0.599164I
b = 0.121967 + 0.888675I
7.66022 + 8.21302I 0
u = 0.986055 0.828942I
a = 0.073132 0.599164I
b = 0.121967 0.888675I
7.66022 8.21302I 0
u = 1.021020 + 0.788235I
a = 1.76694 + 0.84443I
b = 0.88862 + 1.59075I
3.00183 9.98439I 0
u = 1.021020 0.788235I
a = 1.76694 0.84443I
b = 0.88862 1.59075I
3.00183 + 9.98439I 0
u = 0.829095 + 0.994657I
a = 0.002787 + 0.308797I
b = 0.202360 + 1.091070I
9.58964 1.76558I 0
u = 0.829095 0.994657I
a = 0.002787 0.308797I
b = 0.202360 1.091070I
9.58964 + 1.76558I 0
u = 0.530933 + 0.444057I
a = 0.119018 + 0.649917I
b = 0.495359 0.792874I
1.52903 + 1.30429I 5.12625 3.74177I
u = 0.530933 0.444057I
a = 0.119018 0.649917I
b = 0.495359 + 0.792874I
1.52903 1.30429I 5.12625 + 3.74177I
u = 1.160010 + 0.608816I
a = 0.545323 + 0.459676I
b = 0.612716 + 0.220527I
1.59454 2.41033I 0
u = 1.160010 0.608816I
a = 0.545323 0.459676I
b = 0.612716 0.220527I
1.59454 + 2.41033I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.643557 + 0.178198I
a = 2.12674 + 2.04600I
b = 0.025888 0.650354I
5.29698 + 3.34950I 6.77983 1.21808I
u = 0.643557 0.178198I
a = 2.12674 2.04600I
b = 0.025888 + 0.650354I
5.29698 3.34950I 6.77983 + 1.21808I
u = 1.083150 + 0.804487I
a = 1.74237 0.78537I
b = 1.12860 1.67159I
6.5812 15.8690I 0
u = 1.083150 0.804487I
a = 1.74237 + 0.78537I
b = 1.12860 + 1.67159I
6.5812 + 15.8690I 0
u = 1.039460 + 0.875271I
a = 1.252010 0.411170I
b = 0.250076 1.144770I
8.90185 + 8.59101I 0
u = 1.039460 0.875271I
a = 1.252010 + 0.411170I
b = 0.250076 + 1.144770I
8.90185 8.59101I 0
u = 0.069054 + 0.554266I
a = 0.493891 + 0.277556I
b = 0.601970 + 0.652027I
0.13598 1.52625I 0.94008 + 4.56682I
u = 0.069054 0.554266I
a = 0.493891 0.277556I
b = 0.601970 0.652027I
0.13598 + 1.52625I 0.94008 4.56682I
u = 0.224940 + 0.509809I
a = 2.05694 + 0.80981I
b = 0.902556 + 0.301696I
2.40873 + 0.49788I 3.19283 + 1.76670I
u = 0.224940 0.509809I
a = 2.05694 0.80981I
b = 0.902556 0.301696I
2.40873 0.49788I 3.19283 1.76670I
10
II.
I
u
2
= h−51u
3
a
2
+106u
3
a+· · ·80a21, 2u
3
a
2
+u
3
a+· · ·2a2, u
4
u
2
+1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
4
=
a
0.111597a
2
u
3
0.231947au
3
+ ··· + 0.175055a + 0.0459519
a
7
=
1
u
2
a
8
=
0.391685a
2
u
3
+ 0.166302au
3
+ ··· + 0.00656455a 0.485777
u
3
a
9
=
0.391685a
2
u
3
+ 0.166302au
3
+ ··· + 0.00656455a 0.485777
u
3
a
3
=
0.111597a
2
u
3
+ 0.231947au
3
+ ··· + 0.824945a 0.0459519
0.0656455a
2
u
3
0.312910au
3
+ ··· 0.367615a + 0.203501
a
5
=
0.306346a
2
u
3
0.126915au
3
+ ··· + 0.284464a 1.05033
1
a
2
=
0.256018a
2
u
3
0.120350au
3
+ ··· + 0.166302a 0.306346
0.256018a
2
u
3
+ 0.120350au
3
+ ··· 0.166302a + 0.306346
a
11
=
u
u
a
1
=
u
3
u
3
+ u
a
10
=
u
3
0
(ii) Obstruction class = 1
(iii) Cusp Shapes =
588
457
u
3
a
2
+
272
457
a
2
u
2
+
792
457
u
3
a +
400
457
a
2
u +
44
457
u
2
a
112
457
u
3
384
457
a
2
688
457
au
1428
457
u
2
+
368
457
a +
1556
457
u +
2016
457
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
4
c
2
(u
3
+ u
2
1)
4
c
3
, c
7
(u
6
3u
4
+ 2u
2
+ 1)
2
c
4
(u
3
u
2
+ 1)
4
c
5
, c
8
, c
9
(u
2
+ 1)
6
c
6
, c
11
(u
4
u
2
+ 1)
3
c
10
(u
2
+ u + 1)
6
c
12
(u
2
u + 1)
6
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 3y
2
+ 2y 1)
4
c
2
, c
4
(y
3
y
2
+ 2y 1)
4
c
3
, c
7
(y
3
3y
2
+ 2y + 1)
4
c
5
, c
8
, c
9
(y + 1)
12
c
6
, c
11
(y
2
y + 1)
6
c
10
, c
12
(y
2
+ y + 1)
6
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.79596 0.63842I
b = 0.14373 1.45121I
4.66906 0.79824I 5.50976 0.48465I
u = 0.866025 + 0.500000I
a = 2.29105 + 0.88075I
b = 0.60113 + 1.32865I
4.66906 + 4.85801I 5.50976 6.44355I
u = 0.866025 + 0.500000I
a = 1.37094 + 2.98973I
b = 3.27465 0.87744I
0.53148 + 2.02988I 1.01951 3.46410I
u = 0.866025 0.500000I
a = 1.79596 + 0.63842I
b = 0.14373 + 1.45121I
4.66906 + 0.79824I 5.50976 + 0.48465I
u = 0.866025 0.500000I
a = 2.29105 0.88075I
b = 0.60113 1.32865I
4.66906 4.85801I 5.50976 + 6.44355I
u = 0.866025 0.500000I
a = 1.37094 2.98973I
b = 3.27465 + 0.87744I
0.53148 2.02988I 1.01951 + 3.46410I
u = 0.866025 + 0.500000I
a = 0.383943 0.049811I
b = 0.235109 0.877439I
0.53148 2.02988I 1.01951 + 3.46410I
u = 0.866025 + 0.500000I
a = 0.87835 + 1.41333I
b = 0.356011 0.161073I
4.66906 4.85801I 5.50976 + 6.44355I
u = 0.866025 + 0.500000I
a = 0.62838 1.59557I
b = 0.388851 + 0.038512I
4.66906 + 0.79824I 5.50976 + 0.48465I
u = 0.866025 0.500000I
a = 0.383943 + 0.049811I
b = 0.235109 + 0.877439I
0.53148 + 2.02988I 1.01951 3.46410I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866025 0.500000I
a = 0.87835 1.41333I
b = 0.356011 + 0.161073I
4.66906 + 4.85801I 5.50976 6.44355I
u = 0.866025 0.500000I
a = 0.62838 + 1.59557I
b = 0.388851 0.038512I
4.66906 0.79824I 5.50976 0.48465I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
4
)(u
60
+ 35u
59
+ ··· + 64u + 1)
c
2
((u
3
+ u
2
1)
4
)(u
60
5u
59
+ ··· 16u + 1)
c
3
, c
7
((u
6
3u
4
+ 2u
2
+ 1)
2
)(u
60
u
59
+ ··· 4u + 1)
c
4
((u
3
u
2
+ 1)
4
)(u
60
5u
59
+ ··· 16u + 1)
c
5
, c
8
, c
9
((u
2
+ 1)
6
)(u
60
3u
59
+ ··· 154u + 49)
c
6
, c
11
((u
4
u
2
+ 1)
3
)(u
60
3u
59
+ ··· 12u + 17)
c
10
((u
2
+ u + 1)
6
)(u
60
17u
59
+ ··· 2558u + 289)
c
12
((u
2
u + 1)
6
)(u
60
17u
59
+ ··· 2558u + 289)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
+ 3y
2
+ 2y 1)
4
)(y
60
15y
59
+ ··· + 2064y + 1)
c
2
, c
4
((y
3
y
2
+ 2y 1)
4
)(y
60
35y
59
+ ··· 64y + 1)
c
3
, c
7
((y
3
3y
2
+ 2y + 1)
4
)(y
60
15y
59
+ ··· 40y + 1)
c
5
, c
8
, c
9
((y + 1)
12
)(y
60
+ 21y
59
+ ··· + 34104y + 2401)
c
6
, c
11
((y
2
y + 1)
6
)(y
60
17y
59
+ ··· 2558y + 289)
c
10
, c
12
((y
2
+ y + 1)
6
)(y
60
+ 59y
59
+ ··· 725794y + 83521)
17