12n
0181
(K12n
0181
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 9 11 4 6 12 8 10
Solving Sequence
5,10 3,6
2 1 4 9 7 8 12 11
c
5
c
2
c
1
c
4
c
9
c
6
c
8
c
12
c
10
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.89597 × 10
103
u
52
+ 7.97404 × 10
103
u
51
+ ··· + 3.42001 × 10
105
b 2.68164 × 10
105
,
2.24253 × 10
103
u
52
+ 6.90313 × 10
103
u
51
+ ··· + 1.36801 × 10
105
a 2.45570 × 10
105
,
u
53
3u
52
+ ··· 49u + 49i
I
u
2
= h−1878a
5
u + 2600a
4
u + ··· + 23830a 8647,
a
6
3a
5
u 4a
5
+ 7a
4
u a
4
a
3
u 3a
3
+ 9a
2
u + 5a
2
6au + 2a + u, u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.90 × 10
103
u
52
+ 7.97 × 10
103
u
51
+ · · · + 3.42 × 10
105
b 2.68 ×
10
105
, 2.24 × 10
103
u
52
+ 6.90 × 10
103
u
51
+ · · · + 1.37 × 10
105
a 2.46 ×
10
105
, u
53
3u
52
+ · · · 49u + 49i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
0.0163927u
52
0.0504613u
51
+ ··· + 4.67289u + 1.79509
0.00846773u
52
0.0233158u
51
+ ··· + 3.33538u + 0.784101
a
6
=
1
u
2
a
2
=
0.0248604u
52
0.0737771u
51
+ ··· + 8.00826u + 2.57919
0.00846773u
52
0.0233158u
51
+ ··· + 3.33538u + 0.784101
a
1
=
0.00350318u
52
+ 0.0151353u
51
+ ··· 5.53251u + 4.45074
0.00290112u
52
0.00548627u
51
+ ··· 1.43147u + 1.55122
a
4
=
0.0134120u
52
+ 0.0381751u
51
+ ··· 12.1908u + 0.357746
0.00827306u
52
+ 0.0265007u
51
+ ··· 4.74375u + 0.368964
a
9
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
8
=
0.0238148u
52
0.0757412u
51
+ ··· + 15.3375u 0.149255
0.0114699u
52
0.0338179u
51
+ ··· + 7.34993u 0.181045
a
12
=
0.00350318u
52
+ 0.0151353u
51
+ ··· 5.53251u + 4.45074
0.00182181u
52
0.00371679u
51
+ ··· 1.82979u + 1.77789
a
11
=
0.0209597u
52
+ 0.0608672u
51
+ ··· 11.6241u 1.93839
0.00957219u
52
+ 0.0293318u
51
+ ··· 5.11792u 0.541740
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0668454u
52
0.159654u
51
+ ··· + 29.7015u + 4.20227
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
53
+ 33u
52
+ ··· 47u + 1
c
2
, c
4
u
53
5u
52
+ ··· u + 1
c
3
, c
8
u
53
+ u
52
+ ··· 3u + 1
c
5
, c
6
, c
9
u
53
+ 3u
52
+ ··· 49u 49
c
7
, c
11
u
53
+ 3u
52
+ ··· 55u 17
c
10
, c
12
u
53
+ 31u
52
+ ··· 613u + 289
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
53
21y
52
+ ··· + 1053y 1
c
2
, c
4
y
53
33y
52
+ ··· 47y 1
c
3
, c
8
y
53
9y
52
+ ··· + 25y 1
c
5
, c
6
, c
9
y
53
+ 63y
52
+ ··· 67963y 2401
c
7
, c
11
y
53
31y
52
+ ··· 613y 289
c
10
, c
12
y
53
11y
52
+ ··· + 7632559y 83521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.595173 + 0.790194I
a = 0.44043 + 1.93505I
b = 1.210360 0.280896I
4.60939 3.81170I 6.73528 + 3.84171I
u = 0.595173 0.790194I
a = 0.44043 1.93505I
b = 1.210360 + 0.280896I
4.60939 + 3.81170I 6.73528 3.84171I
u = 0.065051 + 1.017050I
a = 3.30036 + 7.32048I
b = 1.027960 + 0.007177I
3.35538 + 2.03910I 49.7365 + 13.7735I
u = 0.065051 1.017050I
a = 3.30036 7.32048I
b = 1.027960 0.007177I
3.35538 2.03910I 49.7365 13.7735I
u = 0.416693 + 0.950759I
a = 1.024360 + 0.862942I
b = 0.965495 0.409417I
4.11133 + 1.46427I 9.04772 2.35631I
u = 0.416693 0.950759I
a = 1.024360 0.862942I
b = 0.965495 + 0.409417I
4.11133 1.46427I 9.04772 + 2.35631I
u = 0.729736 + 0.532396I
a = 0.16697 1.52278I
b = 0.010061 + 0.720357I
1.31363 + 5.14831I 1.33330 6.61182I
u = 0.729736 0.532396I
a = 0.16697 + 1.52278I
b = 0.010061 0.720357I
1.31363 5.14831I 1.33330 + 6.61182I
u = 0.215243 + 1.119870I
a = 0.188281 1.006360I
b = 0.752530 + 0.810688I
0.48114 2.27755I 0
u = 0.215243 1.119870I
a = 0.188281 + 1.006360I
b = 0.752530 0.810688I
0.48114 + 2.27755I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.103946 + 1.148880I
a = 0.680955 0.103748I
b = 0.041239 0.173602I
1.46943 2.21311I 0
u = 0.103946 1.148880I
a = 0.680955 + 0.103748I
b = 0.041239 + 0.173602I
1.46943 + 2.21311I 0
u = 0.212301 + 1.239690I
a = 0.226559 + 0.777926I
b = 1.017950 0.818402I
0.28600 + 3.82525I 0
u = 0.212301 1.239690I
a = 0.226559 0.777926I
b = 1.017950 + 0.818402I
0.28600 3.82525I 0
u = 0.614853 + 0.330857I
a = 0.124371 + 0.894782I
b = 0.214005 0.481317I
1.20368 0.96438I 4.48379 + 2.13228I
u = 0.614853 0.330857I
a = 0.124371 0.894782I
b = 0.214005 + 0.481317I
1.20368 + 0.96438I 4.48379 2.13228I
u = 0.973061 + 0.866281I
a = 0.168964 0.836441I
b = 1.065960 + 0.284444I
1.16177 4.11245I 0
u = 0.973061 0.866281I
a = 0.168964 + 0.836441I
b = 1.065960 0.284444I
1.16177 + 4.11245I 0
u = 1.156780 + 0.633760I
a = 0.556768 + 1.051180I
b = 1.251690 0.389157I
5.12630 + 9.25985I 0
u = 1.156780 0.633760I
a = 0.556768 1.051180I
b = 1.251690 + 0.389157I
5.12630 9.25985I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.200767 + 0.612944I
a = 1.72350 1.16204I
b = 0.266010 + 0.219165I
1.61832 1.52147I 1.349487 0.343641I
u = 0.200767 0.612944I
a = 1.72350 + 1.16204I
b = 0.266010 0.219165I
1.61832 + 1.52147I 1.349487 + 0.343641I
u = 0.215983 + 0.479163I
a = 0.36339 2.19939I
b = 1.001170 + 0.213875I
1.87227 + 0.78178I 5.10778 + 0.42163I
u = 0.215983 0.479163I
a = 0.36339 + 2.19939I
b = 1.001170 0.213875I
1.87227 0.78178I 5.10778 0.42163I
u = 0.520458
a = 0.390996
b = 1.18658
2.71524 0.0344960
u = 0.358766 + 0.278704I
a = 0.700349 0.576141I
b = 0.792821 0.657219I
3.09917 + 0.31720I 4.50890 + 0.69651I
u = 0.358766 0.278704I
a = 0.700349 + 0.576141I
b = 0.792821 + 0.657219I
3.09917 0.31720I 4.50890 0.69651I
u = 0.17201 + 1.54745I
a = 0.061046 + 0.762953I
b = 0.008072 1.011800I
5.20565 3.69410I 0
u = 0.17201 1.54745I
a = 0.061046 0.762953I
b = 0.008072 + 1.011800I
5.20565 + 3.69410I 0
u = 1.28535 + 0.92715I
a = 0.443268 + 0.275722I
b = 1.172440 + 0.025439I
5.51056 1.44071I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.28535 0.92715I
a = 0.443268 0.275722I
b = 1.172440 0.025439I
5.51056 + 1.44071I 0
u = 0.372202 + 0.136798I
a = 1.90070 + 2.55797I
b = 0.643573 0.317372I
1.22108 1.50910I 1.59355 + 4.23824I
u = 0.372202 0.136798I
a = 1.90070 2.55797I
b = 0.643573 + 0.317372I
1.22108 + 1.50910I 1.59355 4.23824I
u = 0.05090 + 1.61029I
a = 0.299743 0.901123I
b = 1.32748 + 0.50601I
9.35172 + 1.68194I 0
u = 0.05090 1.61029I
a = 0.299743 + 0.901123I
b = 1.32748 0.50601I
9.35172 1.68194I 0
u = 0.27323 + 1.60285I
a = 0.259024 0.912712I
b = 0.100537 + 1.137500I
8.46780 + 9.00006I 0
u = 0.27323 1.60285I
a = 0.259024 + 0.912712I
b = 0.100537 1.137500I
8.46780 9.00006I 0
u = 0.03952 + 1.64660I
a = 0.182459 0.963991I
b = 0.203341 + 1.088210I
9.72111 0.68351I 0
u = 0.03952 1.64660I
a = 0.182459 + 0.963991I
b = 0.203341 1.088210I
9.72111 + 0.68351I 0
u = 0.17859 + 1.67997I
a = 0.076726 + 1.173520I
b = 1.31892 0.63562I
13.1597 6.8790I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.17859 1.67997I
a = 0.076726 1.173520I
b = 1.31892 + 0.63562I
13.1597 + 6.8790I 0
u = 0.08259 + 1.69794I
a = 0.054404 + 0.572818I
b = 1.45600 0.45286I
13.53370 + 3.26626I 0
u = 0.08259 1.69794I
a = 0.054404 0.572818I
b = 1.45600 + 0.45286I
13.53370 3.26626I 0
u = 0.42803 + 1.65107I
a = 0.184242 + 1.247230I
b = 1.35580 0.58825I
12.4103 + 15.1230I 0
u = 0.42803 1.65107I
a = 0.184242 1.247230I
b = 1.35580 + 0.58825I
12.4103 15.1230I 0
u = 0.33416 + 1.67478I
a = 0.281652 1.015890I
b = 1.33173 + 0.51061I
9.32017 9.12278I 0
u = 0.33416 1.67478I
a = 0.281652 + 1.015890I
b = 1.33173 0.51061I
9.32017 + 9.12278I 0
u = 0.014001 + 0.282926I
a = 2.23005 + 0.68964I
b = 0.877923 + 0.687381I
2.87265 4.91482I 4.21582 + 6.57376I
u = 0.014001 0.282926I
a = 2.23005 0.68964I
b = 0.877923 0.687381I
2.87265 + 4.91482I 4.21582 6.57376I
u = 0.07007 + 1.82145I
a = 0.350617 0.045144I
b = 1.120840 + 0.120521I
4.27518 3.61779I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07007 1.82145I
a = 0.350617 + 0.045144I
b = 1.120840 0.120521I
4.27518 + 3.61779I 0
u = 0.27553 + 1.82009I
a = 0.038306 + 0.719874I
b = 1.42013 0.39452I
15.0358 + 4.4925I 0
u = 0.27553 1.82009I
a = 0.038306 0.719874I
b = 1.42013 + 0.39452I
15.0358 4.4925I 0
10
II. I
u
2
= h−1878a
5
u + 2600a
4
u + · · · + 23830a 8647, 3a
5
u + 7a
4
u + · · · +
5a
2
+ 2a, u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
a
0.313575a
5
u 0.434129a
4
u + ··· 3.97896a + 1.44381
a
6
=
1
1
a
2
=
0.313575a
5
u 0.434129a
4
u + ··· 2.97896a + 1.44381
0.313575a
5
u 0.434129a
4
u + ··· 3.97896a + 1.44381
a
1
=
0.230422a
5
u 0.782267a
4
u + ··· 1.18901a + 0.965103
0.165136a
5
u + 0.977292a
4
u + ··· + 0.0687928a + 1.64168
a
4
=
0.183336a
5
u 0.225413a
4
u + ··· + 3.74169a 0.115712
0.478711a
5
u + 1.41142a
4
u + ··· + 4.04775a 0.802137
a
9
=
u
0
a
7
=
0
1
a
8
=
0.0719653a
5
u + 0.813157a
4
u + ··· 0.816330a 0.315913
0.231758a
5
u + 0.583904a
4
u + ··· + 0.201703a + 0.493071
a
12
=
0.230422a
5
u 0.782267a
4
u + ··· 1.18901a + 0.965103
0.0652864a
5
u + 0.195024a
4
u + ··· 1.12022a + 2.60678
a
11
=
0.230422a
5
u 0.782267a
4
u + ··· 1.18901a + 0.965103
0.00250459a
5
u 0.128068a
4
u + ··· + 0.476206a + 1.14093
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9236
5989
a
5
u
3388
5989
a
5
29880
5989
a
4
u +
35892
5989
a
4
2204
5989
a
3
u
43908
5989
a
3
72924
5989
a
2
u +
25744
5989
a
2
+
27704
5989
au
75764
5989
a
12196
5989
u
5756
5989
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
4
c
2
(u
3
+ u
2
1)
4
c
3
, c
8
(u
6
3u
4
+ 2u
2
+ 1)
2
c
4
(u
3
u
2
+ 1)
4
c
5
, c
6
, c
9
(u
2
+ 1)
6
c
7
, c
11
(u
4
u
2
+ 1)
3
c
10
(u
2
u + 1)
6
c
12
(u
2
+ u + 1)
6
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 3y
2
+ 2y 1)
4
c
2
, c
4
(y
3
y
2
+ 2y 1)
4
c
3
, c
8
(y
3
3y
2
+ 2y + 1)
4
c
5
, c
6
, c
9
(y + 1)
12
c
7
, c
11
(y
2
y + 1)
6
c
10
, c
12
(y
2
+ y + 1)
6
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.450984 1.062990I
b = 0.877439 + 0.744862I
1.37919 4.85801I 2.49024 + 6.44355I
u = 1.000000I
a = 0.696107 + 0.426734I
b = 0.877439 0.744862I
1.37919 + 4.85801I 2.49024 6.44355I
u = 1.000000I
a = 0.258387 + 1.162360I
b = 0.754878
2.75839 2.02988I 9.01951 + 3.46410I
u = 1.000000I
a = 0.111295 + 1.400630I
b = 0.877439 0.744862I
1.37919 + 0.79824I 2.49024 + 0.48465I
u = 1.000000I
a = 0.133827 0.089093I
b = 0.877439 + 0.744862I
1.37919 0.79824I 2.49024 0.48465I
u = 1.000000I
a = 3.76814 + 1.16236I
b = 0.754878
2.75839 + 2.02988I 9.01951 3.46410I
u = 1.000000I
a = 0.450984 + 1.062990I
b = 0.877439 0.744862I
1.37919 + 4.85801I 2.49024 6.44355I
u = 1.000000I
a = 0.696107 0.426734I
b = 0.877439 + 0.744862I
1.37919 4.85801I 2.49024 + 6.44355I
u = 1.000000I
a = 0.258387 1.162360I
b = 0.754878
2.75839 + 2.02988I 9.01951 3.46410I
u = 1.000000I
a = 0.111295 1.400630I
b = 0.877439 + 0.744862I
1.37919 0.79824I 2.49024 0.48465I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.133827 + 0.089093I
b = 0.877439 0.744862I
1.37919 + 0.79824I 2.49024 + 0.48465I
u = 1.000000I
a = 3.76814 1.16236I
b = 0.754878
2.75839 2.02988I 9.01951 + 3.46410I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
4
)(u
53
+ 33u
52
+ ··· 47u + 1)
c
2
((u
3
+ u
2
1)
4
)(u
53
5u
52
+ ··· u + 1)
c
3
, c
8
((u
6
3u
4
+ 2u
2
+ 1)
2
)(u
53
+ u
52
+ ··· 3u + 1)
c
4
((u
3
u
2
+ 1)
4
)(u
53
5u
52
+ ··· u + 1)
c
5
, c
6
, c
9
((u
2
+ 1)
6
)(u
53
+ 3u
52
+ ··· 49u 49)
c
7
, c
11
((u
4
u
2
+ 1)
3
)(u
53
+ 3u
52
+ ··· 55u 17)
c
10
((u
2
u + 1)
6
)(u
53
+ 31u
52
+ ··· 613u + 289)
c
12
((u
2
+ u + 1)
6
)(u
53
+ 31u
52
+ ··· 613u + 289)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
+ 3y
2
+ 2y 1)
4
)(y
53
21y
52
+ ··· + 1053y 1)
c
2
, c
4
((y
3
y
2
+ 2y 1)
4
)(y
53
33y
52
+ ··· 47y 1)
c
3
, c
8
((y
3
3y
2
+ 2y + 1)
4
)(y
53
9y
52
+ ··· + 25y 1)
c
5
, c
6
, c
9
((y + 1)
12
)(y
53
+ 63y
52
+ ··· 67963y 2401)
c
7
, c
11
((y
2
y + 1)
6
)(y
53
31y
52
+ ··· 613y 289)
c
10
, c
12
((y
2
+ y + 1)
6
)(y
53
11y
52
+ ··· + 7632559y 83521)
17