12n
0184
(K12n
0184
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 12 4 6 5 9 7 11
Solving Sequence
5,10 3,6
2 1 4 9 11 8 7 12
c
5
c
2
c
1
c
4
c
9
c
10
c
8
c
7
c
12
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.91771 × 10
36
u
41
1.79820 × 10
38
u
40
+ ··· + 2.88772 × 10
39
b + 4.22720 × 10
39
,
9.16076 × 10
39
u
41
6.73128 × 10
39
u
40
+ ··· + 4.90913 × 10
40
a + 8.21058 × 10
40
, u
42
2u
41
+ ··· + 16u 17i
I
u
2
= hb + 1, 2u
8
+ u
7
+ 5u
6
3u
5
4u
4
+ 3u
3
2u
2
+ a + 2, u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1i
I
u
3
= h33u
3
a
2
5a
2
u
2
4u
3
a 30a
2
u + 106u
2
a + 89u
3
19a
2
+ 7au + 28u
2
+ 185b 19a 54u 160,
a
2
u
2
5u
3
a + a
3
+ 3a
2
u + 4u
2
a a
2
+ 4au + 6u
2
a u + 1, u
4
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.92 × 10
36
u
41
1.80 × 10
38
u
40
+ · · · + 2.89 × 10
39
b + 4.23 ×
10
39
, 9.16 × 10
39
u
41
6.73 × 10
39
u
40
+ · · · + 4.91 × 10
40
a + 8.21 ×
10
40
, u
42
2u
41
+ · · · + 16u 17i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
0.186607u
41
+ 0.137118u
40
+ ··· + 5.29366u 1.67251
0.00170297u
41
+ 0.0622705u
40
+ ··· 0.201147u 1.46385
a
6
=
1
u
2
a
2
=
0.184904u
41
+ 0.199388u
40
+ ··· + 5.09252u 3.13636
0.00170297u
41
+ 0.0622705u
40
+ ··· 0.201147u 1.46385
a
1
=
0.0588482u
41
0.261568u
40
+ ··· + 3.71273u + 4.22681
0.266107u
41
0.115441u
40
+ ··· 1.21463u + 2.00517
a
4
=
0.0875371u
41
0.115951u
40
+ ··· + 5.83351u + 3.00873
0.0353514u
41
0.0574630u
40
+ ··· 0.374380u 0.0632026
a
9
=
u
u
a
11
=
u
3
u
3
+ u
a
8
=
u
3
u
5
u
3
+ u
a
7
=
0.596514u
41
+ 0.435647u
40
+ ··· + 2.54867u 8.20884
0.687055u
41
0.666732u
40
+ ··· 0.496210u + 10.8635
a
12
=
0.589024u
41
0.658891u
40
+ ··· + 2.42549u + 11.2674
0.0500035u
41
+ 0.0678910u
40
+ ··· 1.20598u 1.53919
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.57605u
41
2.80061u
40
+ ··· + 23.4107u + 46.2988
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
42
+ 2u
41
+ ··· + 24u + 1
c
2
, c
4
u
42
14u
41
+ ··· + 12u 1
c
3
, c
7
u
42
u
41
+ ··· + 5632u + 512
c
5
, c
9
u
42
2u
41
+ ··· + 16u 17
c
6
, c
11
u
42
2u
41
+ ··· 70u 49
c
8
u
42
6u
41
+ ··· 2688u + 2567
c
10
u
42
28u
41
+ ··· + 1206u + 289
c
12
u
42
+ 6u
41
+ ··· + 26460u + 2401
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
42
+ 90y
41
+ ··· + 1420y + 1
c
2
, c
4
y
42
2y
41
+ ··· 24y + 1
c
3
, c
7
y
42
69y
41
+ ··· 17301504y + 262144
c
5
, c
9
y
42
28y
41
+ ··· + 1206y + 289
c
6
, c
11
y
42
+ 6y
41
+ ··· + 26460y + 2401
c
8
y
42
+ 68y
41
+ ··· + 1240622y + 6589489
c
10
y
42
20y
41
+ ··· 5069826y + 83521
c
12
y
42
+ 74y
41
+ ··· 29647548y + 5764801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.961799 + 0.311389I
a = 2.02690 2.18124I
b = 0.464784 + 0.408421I
1.72797 1.37637I 4.55612 0.38965I
u = 0.961799 0.311389I
a = 2.02690 + 2.18124I
b = 0.464784 0.408421I
1.72797 + 1.37637I 4.55612 + 0.38965I
u = 0.829534 + 0.589200I
a = 0.947623 + 0.399065I
b = 0.343165 0.102736I
1.74074 2.33828I 4.84594 + 5.31700I
u = 0.829534 0.589200I
a = 0.947623 0.399065I
b = 0.343165 + 0.102736I
1.74074 + 2.33828I 4.84594 5.31700I
u = 0.944203 + 0.228207I
a = 0.16949 + 2.29855I
b = 0.993256 0.666835I
2.48881 + 3.70265I 6.29949 2.05838I
u = 0.944203 0.228207I
a = 0.16949 2.29855I
b = 0.993256 + 0.666835I
2.48881 3.70265I 6.29949 + 2.05838I
u = 0.835994 + 0.489683I
a = 3.35442 + 8.86991I
b = 1.016890 + 0.004699I
3.34089 + 2.03680I 95.8127 + 26.5459I
u = 0.835994 0.489683I
a = 3.35442 8.86991I
b = 1.016890 0.004699I
3.34089 2.03680I 95.8127 26.5459I
u = 0.965269 + 0.439008I
a = 0.983823 0.359781I
b = 0.899894 + 0.651256I
2.81421 1.00795I 8.57321 + 1.27913I
u = 0.965269 0.439008I
a = 0.983823 + 0.359781I
b = 0.899894 0.651256I
2.81421 + 1.00795I 8.57321 1.27913I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.726987 + 0.560951I
a = 0.802280 + 0.067898I
b = 0.101623 + 0.134205I
1.85016 2.19168I 2.73443 + 3.94919I
u = 0.726987 0.560951I
a = 0.802280 0.067898I
b = 0.101623 0.134205I
1.85016 + 2.19168I 2.73443 3.94919I
u = 0.205294 + 1.093670I
a = 0.50667 1.38304I
b = 1.23869 + 1.08212I
11.4259 8.4418I 2.24860 + 3.75985I
u = 0.205294 1.093670I
a = 0.50667 + 1.38304I
b = 1.23869 1.08212I
11.4259 + 8.4418I 2.24860 3.75985I
u = 0.053594 + 1.137510I
a = 0.59511 + 1.46169I
b = 1.05760 1.28040I
12.15940 + 0.20639I 3.10494 0.07106I
u = 0.053594 1.137510I
a = 0.59511 1.46169I
b = 1.05760 + 1.28040I
12.15940 0.20639I 3.10494 + 0.07106I
u = 0.232942 + 0.816588I
a = 0.184697 0.861641I
b = 0.151638 + 0.884654I
1.95152 + 0.96411I 4.49813 1.84965I
u = 0.232942 0.816588I
a = 0.184697 + 0.861641I
b = 0.151638 0.884654I
1.95152 0.96411I 4.49813 + 1.84965I
u = 1.18461
a = 1.51253
b = 1.40973
0.934538 7.24150
u = 1.126130 + 0.490429I
a = 0.039913 1.285050I
b = 0.828323 + 0.354167I
2.33209 7.91667I 6.88839 + 11.06602I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.126130 0.490429I
a = 0.039913 + 1.285050I
b = 0.828323 0.354167I
2.33209 + 7.91667I 6.88839 11.06602I
u = 1.259460 + 0.006196I
a = 0.97423 2.37844I
b = 0.506833 + 1.138780I
4.47907 1.92884I 6.47929 + 1.71581I
u = 1.259460 0.006196I
a = 0.97423 + 2.37844I
b = 0.506833 1.138780I
4.47907 + 1.92884I 6.47929 1.71581I
u = 1.072950 + 0.670917I
a = 0.45051 + 1.91983I
b = 0.590513 1.035150I
4.15910 + 4.29767I 6.40450 3.97494I
u = 1.072950 0.670917I
a = 0.45051 1.91983I
b = 0.590513 + 1.035150I
4.15910 4.29767I 6.40450 + 3.97494I
u = 1.254550 + 0.204489I
a = 1.39168 2.27514I
b = 1.145780 + 0.655072I
2.23820 + 2.99548I 5.68648 2.96480I
u = 1.254550 0.204489I
a = 1.39168 + 2.27514I
b = 1.145780 0.655072I
2.23820 2.99548I 5.68648 + 2.96480I
u = 0.274846 + 0.651125I
a = 0.435590 + 0.051488I
b = 0.661252 0.443712I
0.15519 + 3.49196I 2.75035 5.76254I
u = 0.274846 0.651125I
a = 0.435590 0.051488I
b = 0.661252 + 0.443712I
0.15519 3.49196I 2.75035 + 5.76254I
u = 0.698771
a = 0.544644
b = 0.196513
0.929263 11.4390
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.360000 + 0.378690I
a = 0.10332 + 2.56500I
b = 0.202310 1.252300I
6.81382 5.26231I 0
u = 1.360000 0.378690I
a = 0.10332 2.56500I
b = 0.202310 + 1.252300I
6.81382 + 5.26231I 0
u = 1.29496 + 0.63382I
a = 0.59935 + 2.83045I
b = 1.31294 0.99932I
14.7912 + 14.5915I 0
u = 1.29496 0.63382I
a = 0.59935 2.83045I
b = 1.31294 + 0.99932I
14.7912 14.5915I 0
u = 1.38494 + 0.58465I
a = 1.93831 1.93197I
b = 0.92670 + 1.41166I
16.3124 + 5.9260I 0
u = 1.38494 0.58465I
a = 1.93831 + 1.93197I
b = 0.92670 1.41166I
16.3124 5.9260I 0
u = 1.42037 + 0.52003I
a = 0.95320 2.91761I
b = 1.24919 + 1.24050I
16.8335 6.1018I 0
u = 1.42037 0.52003I
a = 0.95320 + 2.91761I
b = 1.24919 1.24050I
16.8335 + 6.1018I 0
u = 1.46489 + 0.38079I
a = 2.05057 + 2.08335I
b = 1.22965 1.27108I
16.9282 + 3.1689I 0
u = 1.46489 0.38079I
a = 2.05057 2.08335I
b = 1.22965 + 1.27108I
16.9282 3.1689I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.096688 + 0.349533I
a = 0.82299 + 1.83040I
b = 0.968549 0.219170I
1.74611 0.73385I 3.54446 + 0.56735I
u = 0.096688 0.349533I
a = 0.82299 1.83040I
b = 0.968549 + 0.219170I
1.74611 + 0.73385I 3.54446 0.56735I
9
II.
I
u
2
= hb+1, 2u
8
+u
7
+· · ·+a+2, u
9
u
8
2u
7
+3u
6
+u
5
3u
4
+2u
3
u+1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
2u
8
u
7
5u
6
+ 3u
5
+ 4u
4
3u
3
+ 2u
2
2
1
a
6
=
1
u
2
a
2
=
2u
8
u
7
5u
6
+ 3u
5
+ 4u
4
3u
3
+ 2u
2
3
1
a
1
=
1
0
a
4
=
2u
8
u
7
5u
6
+ 3u
5
+ 4u
4
3u
3
+ 2u
2
2
1
a
9
=
u
u
a
11
=
u
3
u
3
+ u
a
8
=
u
3
u
5
u
3
+ u
a
7
=
u
3
u
5
u
3
+ u
a
12
=
u
6
+ u
4
1
u
6
2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
8
5u
7
+ 10u
6
+ 8u
5
10u
4
8u
3
4u
2
8u 2
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
7
u
9
c
4
(u + 1)
9
c
5
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
6
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
8
, c
12
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
9
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
10
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
11
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
7
y
9
c
5
, c
9
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
6
, c
11
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
8
, c
12
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
10
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 + 0.510351I
a = 1.67861 + 2.31573I
b = 1.00000
3.42837 + 2.09337I 12.6725 14.2088I
u = 0.772920 0.510351I
a = 1.67861 2.31573I
b = 1.00000
3.42837 2.09337I 12.6725 + 14.2088I
u = 0.825933
a = 0.871015
b = 1.00000
0.446489 1.84400
u = 1.173910 + 0.391555I
a = 0.893484 + 0.630694I
b = 1.00000
2.72642 1.33617I 6.61905 + 0.64999I
u = 1.173910 0.391555I
a = 0.893484 0.630694I
b = 1.00000
2.72642 + 1.33617I 6.61905 0.64999I
u = 0.141484 + 0.739668I
a = 0.309843 + 0.043204I
b = 1.00000
1.02799 2.45442I 0.10038 + 1.90984I
u = 0.141484 0.739668I
a = 0.309843 0.043204I
b = 1.00000
1.02799 + 2.45442I 0.10038 1.90984I
u = 1.172470 + 0.500383I
a = 0.659464 0.874093I
b = 1.00000
1.95319 + 7.08493I 3.23178 2.93209I
u = 1.172470 0.500383I
a = 0.659464 + 0.874093I
b = 1.00000
1.95319 7.08493I 3.23178 + 2.93209I
13
III.
I
u
3
= h33u
3
a
2
4u
3
a + · · · 19a 160, a
2
u
2
5u
3
a + · · · a + 1, u
4
u
2
+1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
a
0.178378a
2
u
3
+ 0.0216216au
3
+ ··· + 0.102703a + 0.864865
a
6
=
1
u
2
a
2
=
0.178378a
2
u
3
+ 0.0216216au
3
+ ··· + 1.10270a + 0.864865
0.178378a
2
u
3
+ 0.0216216au
3
+ ··· + 0.102703a + 0.864865
a
1
=
0.156757a
2
u
3
0.0432432au
3
+ ··· 0.00540541a 1.32973
0.232432a
2
u
3
0.632432au
3
+ ··· 0.0540541a + 2.10270
a
4
=
1
5
u
3
a
2
3
5
u
3
a + ···
3
5
a + 1
0.0540541a
2
u
3
0.654054au
3
+ ··· 0.156757a + 0.237838
a
9
=
u
u
a
11
=
u
3
u
3
+ u
a
8
=
u
3
0
a
7
=
0.340541a
2
u
3
0.0594595au
3
+ ··· 0.632432a + 0.421622
0.194595a
2
u
3
+ 0.00540541au
3
+ ··· + 0.675676a + 1.01622
a
12
=
0.156757a
2
u
3
0.0432432au
3
+ ··· 0.00540541a 1.32973
0.232432a
2
u
3
0.632432au
3
+ ··· 0.0540541a + 2.10270
(ii) Obstruction class = 1
(iii) Cusp Shapes =
132
185
u
3
a
2
+
4
37
a
2
u
2
+
16
185
u
3
a +
24
37
a
2
u
424
185
u
2
a
356
185
u
3
+
76
185
a
2
28
185
au
852
185
u
2
+
76
185
a +
216
185
u +
128
37
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
4
c
2
(u
3
+ u
2
1)
4
c
3
, c
7
(u
6
3u
4
+ 2u
2
+ 1)
2
c
4
(u
3
u
2
+ 1)
4
c
5
, c
8
, c
9
(u
4
u
2
+ 1)
3
c
6
, c
11
(u
2
+ 1)
6
c
10
(u
2
u + 1)
6
c
12
(u + 1)
12
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 3y
2
+ 2y 1)
4
c
2
, c
4
(y
3
y
2
+ 2y 1)
4
c
3
, c
7
(y
3
3y
2
+ 2y + 1)
4
c
5
, c
8
, c
9
(y
2
y + 1)
6
c
6
, c
11
(y + 1)
12
c
10
(y
2
+ y + 1)
6
c
12
(y 1)
12
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.972493 1.013180I
b = 0.877439 + 0.744862I
1.37919 0.79824I 1.50976 0.48465I
u = 0.866025 + 0.500000I
a = 0.11905 1.81610I
b = 0.754878
2.75839 + 2.02988I 5.01951 3.46410I
u = 0.866025 + 0.500000I
a = 0.24463 + 2.19530I
b = 0.877439 0.744862I
1.37919 + 4.85801I 1.50976 6.44355I
u = 0.866025 0.500000I
a = 0.972493 + 1.013180I
b = 0.877439 0.744862I
1.37919 + 0.79824I 1.50976 + 0.48465I
u = 0.866025 0.500000I
a = 0.11905 + 1.81610I
b = 0.754878
2.75839 2.02988I 5.01951 + 3.46410I
u = 0.866025 0.500000I
a = 0.24463 2.19530I
b = 0.877439 + 0.744862I
1.37919 4.85801I 1.50976 + 6.44355I
u = 0.866025 + 0.500000I
a = 0.949962 0.298361I
b = 0.877439 0.744862I
1.37919 + 0.79824I 1.50976 + 0.48465I
u = 0.866025 + 0.500000I
a = 0.90246 1.55905I
b = 0.877439 + 0.744862I
1.37919 4.85801I 1.50976 + 6.44355I
u = 0.866025 + 0.500000I
a = 4.14558 0.50862I
b = 0.754878
2.75839 2.02988I 5.01951 + 3.46410I
u = 0.866025 0.500000I
a = 0.949962 + 0.298361I
b = 0.877439 + 0.744862I
1.37919 0.79824I 1.50976 0.48465I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 0.500000I
a = 0.90246 + 1.55905I
b = 0.877439 0.744862I
1.37919 + 4.85801I 1.50976 6.44355I
u = 0.866025 0.500000I
a = 4.14558 + 0.50862I
b = 0.754878
2.75839 + 2.02988I 5.01951 3.46410I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
3
u
2
+ 2u 1)
4
(u
42
+ 2u
41
+ ··· + 24u + 1)
c
2
((u 1)
9
)(u
3
+ u
2
1)
4
(u
42
14u
41
+ ··· + 12u 1)
c
3
, c
7
u
9
(u
6
3u
4
+ 2u
2
+ 1)
2
(u
42
u
41
+ ··· + 5632u + 512)
c
4
((u + 1)
9
)(u
3
u
2
+ 1)
4
(u
42
14u
41
+ ··· + 12u 1)
c
5
(u
4
u
2
+ 1)
3
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
42
2u
41
+ ··· + 16u 17)
c
6
(u
2
+ 1)
6
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
42
2u
41
+ ··· 70u 49)
c
8
(u
4
u
2
+ 1)
3
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
42
6u
41
+ ··· 2688u + 2567)
c
9
(u
4
u
2
+ 1)
3
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
42
2u
41
+ ··· + 16u 17)
c
10
((u
2
u + 1)
6
)(u
9
5u
8
+ ··· + u 1)
· (u
42
28u
41
+ ··· + 1206u + 289)
c
11
(u
2
+ 1)
6
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
42
2u
41
+ ··· 70u 49)
c
12
((u + 1)
12
)(u
9
+ 3u
8
+ ··· + u 1)
· (u
42
+ 6u
41
+ ··· + 26460u + 2401)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
3
+ 3y
2
+ 2y 1)
4
(y
42
+ 90y
41
+ ··· + 1420y + 1)
c
2
, c
4
((y 1)
9
)(y
3
y
2
+ 2y 1)
4
(y
42
2y
41
+ ··· 24y + 1)
c
3
, c
7
y
9
(y
3
3y
2
+ 2y + 1)
4
(y
42
69y
41
+ ··· 1.73015 × 10
7
y + 262144)
c
5
, c
9
((y
2
y + 1)
6
)(y
9
5y
8
+ ··· + y 1)
· (y
42
28y
41
+ ··· + 1206y + 289)
c
6
, c
11
((y + 1)
12
)(y
9
+ 3y
8
+ ··· + y 1)
· (y
42
+ 6y
41
+ ··· + 26460y + 2401)
c
8
((y
2
y + 1)
6
)(y
9
+ 7y
8
+ ··· + 13y 1)
· (y
42
+ 68y
41
+ ··· + 1240622y + 6589489)
c
10
(y
2
+ y + 1)
6
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
42
20y
41
+ ··· 5069826y + 83521)
c
12
(y 1)
12
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
42
+ 74y
41
+ ··· 29647548y + 5764801)
20