12n
0185
(K12n
0185
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 9 3 12 5 6 8 11
Solving Sequence
5,9
10 6 7
3,11
2 1 4 12 8
c
9
c
5
c
6
c
10
c
2
c
1
c
4
c
12
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h376024023995393u
34
+ 337812687444816u
33
+ ··· + 236220224312633b 92299978153456,
21436667059562u
34
138041311777599u
33
+ ··· + 236220224312633a 507133705138188,
u
35
+ 2u
34
+ ··· + 7u
2
1i
I
u
2
= h−u
7
u
6
+ 2u
5
+ 3u
4
2u
2
+ b 3u 2, u
7
+ u
6
+ 3u
5
2u
4
3u
3
+ a + 2,
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
* 2 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.76 × 10
14
u
34
+ 3.38 × 10
14
u
33
+ · · · + 2.36 × 10
14
b 9.23 ×
10
13
, 2.14 × 10
13
u
34
1.38 × 10
14
u
33
+ · · · + 2.36 × 10
14
a 5.07 ×
10
14
, u
35
+ 2u
34
+ · · · + 7u
2
1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
2u
u
3
+ u
a
3
=
0.0907487u
34
+ 0.584376u
33
+ ··· + 2.44395u + 2.14687
1.59184u
34
1.43008u
33
+ ··· 0.811363u + 0.390737
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.0907487u
34
+ 0.584376u
33
+ ··· + 2.44395u + 2.14687
1.45102u
34
1.18233u
33
+ ··· 0.902112u 0.0121412
a
1
=
0.575913u
34
+ 0.751783u
33
+ ··· + 1.72764u 0.721893
0.273973u
34
+ 0.369123u
33
+ ··· + 0.836448u 1.01092
a
4
=
0.0507248u
34
+ 0.357239u
33
+ ··· + 1.91500u + 2.35136
1.53287u
34
1.32266u
33
+ ··· 0.588139u + 0.311133
a
12
=
0.356599u
34
+ 0.653291u
33
+ ··· + 1.26570u 0.986457
0.215125u
34
+ 0.426155u
33
+ ··· + 0.736752u 0.781963
a
8
=
0.722473u
34
1.09863u
33
+ ··· 1.64586u + 1.70851
0.119619u
34
+ 0.128063u
33
+ ··· 0.342320u 0.375739
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2062473679663797
236220224312633
u
34
828575186416011
236220224312633
u
33
+ ··· +
1259833306856340
236220224312633
u
231203744342586
236220224312633
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
+ 49u
34
+ ··· + 3150u + 1
c
2
, c
4
u
35
9u
34
+ ··· 70u + 1
c
3
, c
7
u
35
3u
34
+ ··· 2432u 256
c
5
, c
9
, c
10
u
35
+ 2u
34
+ ··· + 7u
2
1
c
6
u
35
6u
34
+ ··· + 1364u 847
c
8
, c
11
u
35
+ 2u
34
+ ··· + 4u + 1
c
12
u
35
+ 24u
34
+ ··· + 14u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
117y
34
+ ··· + 9175798y 1
c
2
, c
4
y
35
49y
34
+ ··· + 3150y 1
c
3
, c
7
y
35
+ 51y
34
+ ··· + 5423104y 65536
c
5
, c
9
, c
10
y
35
36y
34
+ ··· + 14y 1
c
6
y
35
36y
34
+ ··· + 23619926y 717409
c
8
, c
11
y
35
24y
34
+ ··· + 14y 1
c
12
y
35
24y
34
+ ··· + 402y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.571697 + 0.825819I
a = 1.02997 + 1.33115I
b = 0.13854 1.61473I
8.58737 + 2.74263I 10.41024 2.56572I
u = 0.571697 0.825819I
a = 1.02997 1.33115I
b = 0.13854 + 1.61473I
8.58737 2.74263I 10.41024 + 2.56572I
u = 0.552087 + 0.825280I
a = 0.87268 + 1.55881I
b = 0.20679 1.66620I
12.94840 + 3.24222I 12.66532 0.54583I
u = 0.552087 0.825280I
a = 0.87268 1.55881I
b = 0.20679 + 1.66620I
12.94840 3.24222I 12.66532 + 0.54583I
u = 0.575473 + 0.807100I
a = 1.29277 + 1.27295I
b = 0.43025 1.79381I
13.0318 8.6571I 12.52203 + 5.43059I
u = 0.575473 0.807100I
a = 1.29277 1.27295I
b = 0.43025 + 1.79381I
13.0318 + 8.6571I 12.52203 5.43059I
u = 1.215130 + 0.192273I
a = 0.340293 + 0.190807I
b = 0.450734 + 0.019324I
1.72471 + 0.87161I 4.58345 + 0.49262I
u = 1.215130 0.192273I
a = 0.340293 0.190807I
b = 0.450734 0.019324I
1.72471 0.87161I 4.58345 0.49262I
u = 0.128163 + 0.673108I
a = 0.157665 + 0.722315I
b = 0.179473 0.037885I
1.43459 + 2.27058I 1.42314 3.26969I
u = 0.128163 0.673108I
a = 0.157665 0.722315I
b = 0.179473 + 0.037885I
1.43459 2.27058I 1.42314 + 3.26969I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.521823 + 0.375425I
a = 1.98216 + 0.47145I
b = 0.419285 + 1.197250I
4.17337 3.54764I 13.9483 + 7.1314I
u = 0.521823 0.375425I
a = 1.98216 0.47145I
b = 0.419285 1.197250I
4.17337 + 3.54764I 13.9483 7.1314I
u = 0.628588
a = 2.61914
b = 0.676319
6.22799 17.7300
u = 1.38882
a = 0.0130861
b = 1.19281
6.53287 13.8260
u = 1.366140 + 0.266698I
a = 0.369885 + 0.416733I
b = 0.1060940 + 0.0070702I
3.30368 5.68455I 8.00000 + 0.I
u = 1.366140 0.266698I
a = 0.369885 0.416733I
b = 0.1060940 0.0070702I
3.30368 + 5.68455I 8.00000 + 0.I
u = 1.44080
a = 0.727727
b = 7.36351
8.27744 27.9740
u = 1.47539
a = 0.857502
b = 2.36593
8.21207 8.00000
u = 1.47608 + 0.08600I
a = 0.570629 + 0.485997I
b = 0.33599 + 1.45625I
6.62003 2.59519I 0
u = 1.47608 0.08600I
a = 0.570629 0.485997I
b = 0.33599 1.45625I
6.62003 + 2.59519I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.349636 + 0.351362I
a = 1.224010 0.204907I
b = 0.210574 + 0.830362I
0.594132 + 1.120540I 6.95383 6.15774I
u = 0.349636 0.351362I
a = 1.224010 + 0.204907I
b = 0.210574 0.830362I
0.594132 1.120540I 6.95383 + 6.15774I
u = 1.52553 + 0.10391I
a = 0.768523 + 0.940824I
b = 0.459596 + 1.316590I
10.99510 + 5.24946I 0
u = 1.52553 0.10391I
a = 0.768523 0.940824I
b = 0.459596 1.316590I
10.99510 5.24946I 0
u = 1.54711
a = 1.47176
b = 0.141707
13.5056 0
u = 0.209346 + 0.398609I
a = 0.21466 2.09699I
b = 0.49858 + 1.79535I
3.31433 + 0.90397I 10.45251 + 5.11287I
u = 0.209346 0.398609I
a = 0.21466 + 2.09699I
b = 0.49858 1.79535I
3.31433 0.90397I 10.45251 5.11287I
u = 0.439838
a = 0.227233
b = 0.497327
0.965385 10.6440
u = 1.56383 + 0.27842I
a = 1.192970 0.084215I
b = 0.57843 2.00327I
19.4383 + 12.6641I 0
u = 1.56383 0.27842I
a = 1.192970 + 0.084215I
b = 0.57843 + 2.00327I
19.4383 12.6641I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56397 + 0.29270I
a = 1.145030 + 0.192290I
b = 0.07466 1.64853I
19.6118 + 0.8962I 0
u = 1.56397 0.29270I
a = 1.145030 0.192290I
b = 0.07466 + 1.64853I
19.6118 0.8962I 0
u = 1.56922 + 0.28522I
a = 1.121370 + 0.038644I
b = 0.40086 1.74127I
15.6045 6.8496I 0
u = 1.56922 0.28522I
a = 1.121370 0.038644I
b = 0.40086 + 1.74127I
15.6045 + 6.8496I 0
u = 0.344297
a = 3.18086
b = 0.768868
2.11337 0.398900
8
II. I
u
2
= h−u
7
u
6
+ 2u
5
+ 3u
4
2u
2
+ b 3u 2, u
7
+ u
6
+ 3u
5
2u
4
3u
3
+ a + 2, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
2u
u
3
+ u
a
3
=
u
7
u
6
3u
5
+ 2u
4
+ 3u
3
2
u
7
+ u
6
2u
5
3u
4
+ 2u
2
+ 3u + 2
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
7
u
6
3u
5
+ 2u
4
+ 3u
3
2
u
7
+ u
6
2u
5
3u
4
+ 2u
2
+ 2u + 2
a
1
=
0
u
a
4
=
u
7
u
6
3u
5
+ 2u
4
+ 3u
3
2
u
7
+ u
6
2u
5
3u
4
+ 2u
2
+ 3u + 2
a
12
=
u
5
+ 2u
3
u
u
7
+ 3u
5
2u
3
u
a
8
=
u
3
2u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
9u
6
+ 10u
5
+ 27u
4
+ 2u
3
18u
2
20u 29
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
6
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
8
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
9
, c
10
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
11
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
12
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
9
, c
10
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
6
, c
12
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
8
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.805639 0.183365I
b = 0.037144 + 0.630517I
2.68559 + 1.13123I 13.38132 1.25921I
u = 1.180120 0.268597I
a = 0.805639 + 0.183365I
b = 0.037144 0.630517I
2.68559 1.13123I 13.38132 + 1.25921I
u = 0.108090 + 0.747508I
a = 0.189481 1.310380I
b = 0.082879 + 0.802680I
0.51448 + 2.57849I 10.25723 4.63100I
u = 0.108090 0.747508I
a = 0.189481 + 1.310380I
b = 0.082879 0.802680I
0.51448 2.57849I 10.25723 + 4.63100I
u = 1.37100
a = 0.729394
b = 5.33104
8.14766 37.4550
u = 1.334530 + 0.318930I
a = 0.708845 0.169402I
b = 0.259819 + 0.832925I
4.02461 6.44354I 13.7170 + 7.8762I
u = 1.334530 0.318930I
a = 0.708845 + 0.169402I
b = 0.259819 0.832925I
4.02461 + 6.44354I 13.7170 7.8762I
u = 0.463640
a = 2.15684
b = 0.948553
2.48997 22.8330
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
35
+ 49u
34
+ ··· + 3150u + 1)
c
2
((u 1)
8
)(u
35
9u
34
+ ··· 70u + 1)
c
3
, c
7
u
8
(u
35
3u
34
+ ··· 2432u 256)
c
4
((u + 1)
8
)(u
35
9u
34
+ ··· 70u + 1)
c
5
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
35
+ 2u
34
+ ··· + 7u
2
1)
c
6
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
35
6u
34
+ ··· + 1364u 847)
c
8
(u
8
u
7
+ ··· + 2u 1)(u
35
+ 2u
34
+ ··· + 4u + 1)
c
9
, c
10
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)(u
35
+ 2u
34
+ ··· + 7u
2
1)
c
11
(u
8
+ u
7
+ ··· 2u 1)(u
35
+ 2u
34
+ ··· + 4u + 1)
c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
35
+ 24u
34
+ ··· + 14u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
35
117y
34
+ ··· + 9175798y 1)
c
2
, c
4
((y 1)
8
)(y
35
49y
34
+ ··· + 3150y 1)
c
3
, c
7
y
8
(y
35
+ 51y
34
+ ··· + 5423104y 65536)
c
5
, c
9
, c
10
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
35
36y
34
+ ··· + 14y 1)
c
6
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
35
36y
34
+ ··· + 23619926y 717409)
c
8
, c
11
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
35
24y
34
+ ··· + 14y 1)
c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
35
24y
34
+ ··· + 402y 1)
14