12n
0187
(K12n
0187
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 9 4 12 5 6 8 11
Solving Sequence
5,10
6
3,11
2 1 4 9 7 8 12
c
5
c
10
c
2
c
1
c
4
c
9
c
6
c
7
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.64866 × 10
37
u
39
3.95589 × 10
37
u
38
+ ··· + 1.60462 × 10
38
b 1.99553 × 10
38
,
1.25972 × 10
38
u
39
+ 6.09841 × 10
37
u
38
+ ··· + 3.20923 × 10
38
a + 1.75553 × 10
39
, u
40
+ 2u
39
+ ··· + 24u + 8i
I
u
2
= hb + 1, 2u
7
+ u
6
5u
5
2u
4
+ 3u
3
+ a + 2u + 2, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
3
= h2a
2
2au + b 4a + 2u + 2, 4a
3
6a
2
u 12a
2
+ 12au + 16a 7u 8, u
2
2i
I
v
1
= ha, v
2
+ b 3v + 1, v
3
+ 2v
2
3v + 1i
* 4 irreducible components of dim
C
= 0, with total 57 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.65 × 10
37
u
39
3.96 × 10
37
u
38
+ · · · + 1.60 × 10
38
b 2.00 ×
10
38
, 1.26 × 10
38
u
39
+ 6.10 × 10
37
u
38
+ · · · + 3.21 × 10
38
a + 1.76 ×
10
39
, u
40
+ 2u
39
+ · · · + 24u + 8i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
3
=
0.392531u
39
0.190027u
38
+ ··· 31.7178u 5.47024
0.289705u
39
+ 0.246532u
38
+ ··· + 3.47362u + 1.24362
a
11
=
u
u
3
+ u
a
2
=
0.102825u
39
+ 0.0565047u
38
+ ··· 28.2442u 4.22662
0.289705u
39
+ 0.246532u
38
+ ··· + 3.47362u + 1.24362
a
1
=
0.0112960u
39
+ 0.165138u
38
+ ··· 6.59349u + 0.402568
0.409908u
39
0.550903u
38
+ ··· 7.68190u 4.87982
a
4
=
0.356445u
39
0.0512403u
38
+ ··· 27.2073u 3.79706
0.499643u
39
0.495583u
38
+ ··· 9.08353u 4.38695
a
9
=
u
u
a
7
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
8
=
0.0519172u
39
+ 0.0642471u
38
+ ··· 8.35273u 0.669722
0.130286u
39
+ 0.294618u
38
+ ··· + 2.41118u + 2.66716
a
12
=
0.0519172u
39
+ 0.0642471u
38
+ ··· 8.35273u 0.669722
0.358582u
39
0.442506u
38
+ ··· 6.02980u 4.01181
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.32861u
39
+ 4.79660u
38
+ ··· + 0.992255u + 10.7532
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
40
+ 4u
39
+ ··· + 2u + 1
c
2
, c
4
u
40
12u
39
+ ··· + 2u + 1
c
3
, c
7
u
40
+ 2u
39
+ ··· + 1408u 256
c
5
, c
9
, c
10
u
40
+ 2u
39
+ ··· + 24u + 8
c
6
u
40
6u
39
+ ··· + 4248u + 1192
c
8
, c
11
u
40
+ 5u
39
+ ··· + 49u + 7
c
12
u
40
+ 9u
39
+ ··· 63u + 49
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
40
+ 76y
39
+ ··· 2330y + 1
c
2
, c
4
y
40
4y
39
+ ··· 2y + 1
c
3
, c
7
y
40
+ 60y
39
+ ··· 4636672y + 65536
c
5
, c
9
, c
10
y
40
32y
39
+ ··· 1728y + 64
c
6
y
40
+ 64y
39
+ ··· 52489536y + 1420864
c
8
, c
11
y
40
9y
39
+ ··· + 63y + 49
c
12
y
40
+ 55y
39
+ ··· 206241y + 2401
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.897120 + 0.222335I
a = 1.274740 0.263007I
b = 1.187560 + 0.291372I
3.03578 0.99249I 14.4826 + 4.2079I
u = 0.897120 0.222335I
a = 1.274740 + 0.263007I
b = 1.187560 0.291372I
3.03578 + 0.99249I 14.4826 4.2079I
u = 0.771034 + 0.454110I
a = 0.157593 0.131539I
b = 0.140691 + 0.765731I
0.072412 0.256498I 11.04074 0.73471I
u = 0.771034 0.454110I
a = 0.157593 + 0.131539I
b = 0.140691 0.765731I
0.072412 + 0.256498I 11.04074 + 0.73471I
u = 0.215830 + 1.094140I
a = 0.14903 1.49112I
b = 1.21980 + 1.09723I
13.1415 8.3613I 10.09689 + 4.44612I
u = 0.215830 1.094140I
a = 0.14903 + 1.49112I
b = 1.21980 1.09723I
13.1415 + 8.3613I 10.09689 4.44612I
u = 0.214868 + 0.849389I
a = 0.456922 1.112210I
b = 0.092951 + 0.975052I
3.63859 + 0.81418I 7.43543 0.73577I
u = 0.214868 0.849389I
a = 0.456922 + 1.112210I
b = 0.092951 0.975052I
3.63859 0.81418I 7.43543 + 0.73577I
u = 1.068280 + 0.375203I
a = 1.15584 1.32730I
b = 1.241440 + 0.388080I
2.92773 + 3.67752I 14.1570 3.8873I
u = 1.068280 0.375203I
a = 1.15584 + 1.32730I
b = 1.241440 0.388080I
2.92773 3.67752I 14.1570 + 3.8873I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.055954 + 1.139480I
a = 0.510868 + 1.235600I
b = 1.05505 1.26055I
13.77200 + 0.23648I 9.35233 + 0.10077I
u = 0.055954 1.139480I
a = 0.510868 1.235600I
b = 1.05505 + 1.26055I
13.77200 0.23648I 9.35233 0.10077I
u = 0.834687 + 0.181028I
a = 0.008249 + 1.189290I
b = 0.893530 0.929162I
0.56575 + 3.31942I 15.0343 3.7698I
u = 0.834687 0.181028I
a = 0.008249 1.189290I
b = 0.893530 + 0.929162I
0.56575 3.31942I 15.0343 + 3.7698I
u = 1.298310 + 0.059006I
a = 1.144330 + 0.058961I
b = 0.832938 0.605919I
1.84528 + 2.59969I 12.00000 2.54541I
u = 1.298310 0.059006I
a = 1.144330 0.058961I
b = 0.832938 + 0.605919I
1.84528 2.59969I 12.00000 + 2.54541I
u = 1.212760 + 0.510150I
a = 0.356611 + 0.737488I
b = 0.343875 1.008720I
0.58084 5.79218I 12.00000 + 5.32251I
u = 1.212760 0.510150I
a = 0.356611 0.737488I
b = 0.343875 + 1.008720I
0.58084 + 5.79218I 12.00000 5.32251I
u = 1.341590 + 0.066077I
a = 1.157320 0.440885I
b = 0.011549 + 0.213669I
6.40298 0.09411I 12.00000 + 0.I
u = 1.341590 0.066077I
a = 1.157320 + 0.440885I
b = 0.011549 0.213669I
6.40298 + 0.09411I 12.00000 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.344310 + 0.274263I
a = 1.203800 0.373288I
b = 0.758510 + 0.290373I
3.47032 7.09799I 0
u = 1.344310 0.274263I
a = 1.203800 + 0.373288I
b = 0.758510 0.290373I
3.47032 + 7.09799I 0
u = 0.187892 + 0.587668I
a = 0.380383 + 0.661515I
b = 0.724223 0.526726I
1.29420 + 3.83935I 7.67979 8.27282I
u = 0.187892 0.587668I
a = 0.380383 0.661515I
b = 0.724223 + 0.526726I
1.29420 3.83935I 7.67979 + 8.27282I
u = 1.40352
a = 13.1227
b = 0.992359
8.20369 295.210
u = 1.217640 + 0.701085I
a = 0.398099 + 0.182880I
b = 1.08177 1.20718I
10.13750 + 2.10810I 0
u = 1.217640 0.701085I
a = 0.398099 0.182880I
b = 1.08177 + 1.20718I
10.13750 2.10810I 0
u = 1.41252 + 0.12831I
a = 0.979228 + 0.146823I
b = 0.678609 0.746967I
1.77463 + 2.63558I 0
u = 1.41252 0.12831I
a = 0.979228 0.146823I
b = 0.678609 + 0.746967I
1.77463 2.63558I 0
u = 1.46431
a = 0.581453
b = 0.422164
6.89614 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.35026 + 0.61000I
a = 0.81792 1.16224I
b = 1.17901 + 1.12040I
9.78004 6.39860I 0
u = 1.35026 0.61000I
a = 0.81792 + 1.16224I
b = 1.17901 1.12040I
9.78004 + 6.39860I 0
u = 0.314968 + 0.399432I
a = 1.012740 + 0.763059I
b = 0.781356 0.355549I
0.815291 0.298544I 10.56718 0.99043I
u = 0.314968 0.399432I
a = 1.012740 0.763059I
b = 0.781356 + 0.355549I
0.815291 + 0.298544I 10.56718 + 0.99043I
u = 1.42513 + 0.56145I
a = 0.492105 0.012487I
b = 0.86996 + 1.29131I
9.15481 + 5.80967I 0
u = 1.42513 0.56145I
a = 0.492105 + 0.012487I
b = 0.86996 1.29131I
9.15481 5.80967I 0
u = 1.47346 + 0.47082I
a = 1.11672 + 1.20821I
b = 1.24799 0.96895I
7.7860 + 13.9558I 0
u = 1.47346 0.47082I
a = 1.11672 1.20821I
b = 1.24799 + 0.96895I
7.7860 13.9558I 0
u = 0.427942
a = 0.826467
b = 0.164518
0.684223 14.1610
u = 0.239037
a = 13.0961
b = 0.885633
2.91744 60.2580
8
II. I
u
2
=
hb+1, 2u
7
+u
6
5u
5
2u
4
+3u
3
+a+2u+2, u
8
+u
7
3u
6
2u
5
+3u
4
+2u1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
3
=
2u
7
u
6
+ 5u
5
+ 2u
4
3u
3
2u 2
1
a
11
=
u
u
3
+ u
a
2
=
2u
7
u
6
+ 5u
5
+ 2u
4
3u
3
2u 3
1
a
1
=
1
0
a
4
=
2u
7
u
6
+ 5u
5
+ 2u
4
3u
3
2u 2
1
a
9
=
u
u
a
7
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
8
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
12
=
u
4
u
2
1
u
6
2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ u
6
+ 10u
5
3u
4
6u
3
+ 2u
2
4u 11
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
6
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
8
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
9
, c
10
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
11
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
12
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
9
, c
10
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
6
, c
12
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
8
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.914310 + 0.514779I
b = 1.00000
2.68559 1.13123I 13.44913 0.23763I
u = 1.180120 0.268597I
a = 0.914310 0.514779I
b = 1.00000
2.68559 + 1.13123I 13.44913 + 0.23763I
u = 0.108090 + 0.747508I
a = 0.036111 + 0.260696I
b = 1.00000
0.51448 2.57849I 10.29693 + 2.50491I
u = 0.108090 0.747508I
a = 0.036111 0.260696I
b = 1.00000
0.51448 + 2.57849I 10.29693 2.50491I
u = 1.37100
a = 2.88842
b = 1.00000
8.14766 2.27260
u = 1.334530 + 0.318930I
a = 1.043070 0.634428I
b = 1.00000
4.02461 + 6.44354I 17.1399 2.7122I
u = 1.334530 0.318930I
a = 1.043070 + 0.634428I
b = 1.00000
4.02461 6.44354I 17.1399 + 2.7122I
u = 0.463640
a = 3.04588
b = 1.00000
2.48997 12.9560
12
III.
I
u
3
= h2a
2
2au+b4a+2u+2, 4a
3
6a
2
u12a
2
+12au+16a7u8, u
2
2i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
2
a
3
=
a
2a
2
+ 2au + 4a 2u 2
a
11
=
u
u
a
2
=
2a
2
+ 2au + 5a 2u 2
2a
2
+ 2au + 4a 2u 2
a
1
=
au +
3
2
u + 2
au + u + 2
a
4
=
a
2
u + 4a
2
7au 10a +
13
2
u + 8
2a
2
3au 4a + 3u + 3
a
9
=
u
u
a
7
=
1
0
a
8
=
au +
3
2
u + 2
au + u + 2
a
12
=
au +
1
2
u + 2
au + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a
2
+ 8au + 16a 8u 28
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
(u
3
+ u
2
+ 2u + 1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
9
c
10
(u
2
2)
3
c
8
, c
12
(u + 1)
6
c
11
(u 1)
6
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
6
, c
9
c
10
(y 2)
6
c
8
, c
11
, c
12
(y 1)
6
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.41421
a = 1.238750 + 0.397592I
b = 0.877439 + 0.744862I
3.55561 2.82812I 16.4902 + 2.9794I
u = 1.41421
a = 1.238750 0.397592I
b = 0.877439 0.744862I
3.55561 + 2.82812I 16.4902 2.9794I
u = 1.41421
a = 2.64382
b = 0.754878
7.69319 23.0200
u = 1.41421
a = 0.761252 + 0.397592I
b = 0.877439 0.744862I
3.55561 + 2.82812I 16.4902 2.9794I
u = 1.41421
a = 0.761252 0.397592I
b = 0.877439 + 0.744862I
3.55561 2.82812I 16.4902 + 2.9794I
u = 1.41421
a = 0.643824
b = 0.754878
7.69319 23.0200
16
IV. I
v
1
= ha, v
2
+ b 3v + 1, v
3
+ 2v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
v
0
a
6
=
1
0
a
3
=
0
v
2
+ 3v 1
a
11
=
v
0
a
2
=
v
2
+ 3v 1
v
2
+ 3v 1
a
1
=
v
2
+ 3v 1
v
2
2v + 3
a
4
=
2v
2
5v + 4
2v
2
5v + 3
a
9
=
v
0
a
7
=
1
0
a
8
=
v
2
3v + 1
v
2
+ 2v 3
a
12
=
v
2
+ 4v 1
v
2
2v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2v 6
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
, c
6
, c
9
c
10
u
3
c
7
u
3
+ u
2
+ 2u + 1
c
8
(u 1)
3
c
11
, c
12
(u + 1)
3
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
y
3
y
2
+ 2y 1
c
5
, c
6
, c
9
c
10
y
3
c
8
, c
11
, c
12
(y 1)
3
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.539798 + 0.182582I
a = 0
b = 0.877439 + 0.744862I
1.37919 2.82812I 7.07960 0.36516I
v = 0.539798 0.182582I
a = 0
b = 0.877439 0.744862I
1.37919 + 2.82812I 7.07960 + 0.36516I
v = 3.07960
a = 0
b = 0.754878
2.75839 0.159190
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
3
u
2
+ 2u 1)
3
(u
40
+ 4u
39
+ ··· + 2u + 1)
c
2
((u 1)
8
)(u
3
+ u
2
1)
3
(u
40
12u
39
+ ··· + 2u + 1)
c
3
u
8
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
· (u
40
+ 2u
39
+ ··· + 1408u 256)
c
4
((u + 1)
8
)(u
3
u
2
+ 1)
3
(u
40
12u
39
+ ··· + 2u + 1)
c
5
u
3
(u
2
2)
3
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
40
+ 2u
39
+ ··· + 24u + 8)
c
6
u
3
(u
2
2)
3
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
40
6u
39
+ ··· + 4248u + 1192)
c
7
u
8
(u
3
u
2
+ 2u 1)
2
(u
3
+ u
2
+ 2u + 1)
· (u
40
+ 2u
39
+ ··· + 1408u 256)
c
8
(u 1)
3
(u + 1)
6
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
40
+ 5u
39
+ ··· + 49u + 7)
c
9
, c
10
u
3
(u
2
2)
3
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
40
+ 2u
39
+ ··· + 24u + 8)
c
11
(u 1)
6
(u + 1)
3
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
40
+ 5u
39
+ ··· + 49u + 7)
c
12
(u + 1)
9
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
40
+ 9u
39
+ ··· 63u + 49)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
3
+ 3y
2
+ 2y 1)
3
(y
40
+ 76y
39
+ ··· 2330y + 1)
c
2
, c
4
((y 1)
8
)(y
3
y
2
+ 2y 1)
3
(y
40
4y
39
+ ··· 2y + 1)
c
3
, c
7
y
8
(y
3
+ 3y
2
+ 2y 1)
3
(y
40
+ 60y
39
+ ··· 4636672y + 65536)
c
5
, c
9
, c
10
y
3
(y 2)
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
40
32y
39
+ ··· 1728y + 64)
c
6
y
3
(y 2)
6
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
40
+ 64y
39
+ ··· 52489536y + 1420864)
c
8
, c
11
(y 1)
9
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
40
9y
39
+ ··· + 63y + 49)
c
12
(y 1)
9
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
40
+ 55y
39
+ ··· 206241y + 2401)
22