12n
0198
(K12n
0198
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 11 9 3 12 5 6 10 8
Solving Sequence
5,11 3,6
2 1 4 10 12 9 7 8
c
5
c
2
c
1
c
4
c
10
c
11
c
9
c
6
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
21
u
20
+ ··· + b u, u
21
u
20
+ ··· 3u
3
+ a, u
23
+ 2u
22
+ ··· + 2u + 1i
I
u
2
= hb + 1, u
3
+ u
2
+ a, u
4
+ u
2
+ u + 1i
I
u
3
= hb + 1, u
3
+ a u + 1, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
* 3 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
21
u
20
+· · ·+bu, u
21
u
20
+· · ·3u
3
+a, u
23
+2u
22
+· · ·+2u+1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
u
21
+ u
20
+ ··· + u
4
+ 3u
3
u
21
+ u
20
+ ··· + u
2
+ u
a
6
=
1
u
2
a
2
=
2u
21
+ 2u
20
+ ··· + u
2
+ u
u
21
+ u
20
+ ··· + u
2
+ u
a
1
=
u
19
+ 4u
17
+ 8u
15
+ 8u
13
+ 3u
11
2u
9
2u
7
+ u
3
u
21
5u
19
+ ··· u
3
u
a
4
=
3u
21
+ 3u
20
+ ··· + 3u + 1
u
21
+ u
20
+ ··· + u
2
+ 2u
a
10
=
u
u
3
+ u
a
12
=
u
3
u
5
+ u
3
+ u
a
9
=
u
3
u
3
+ u
a
7
=
u
8
+ u
6
+ u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
8
=
u
11
2u
9
2u
7
+ u
3
u
13
+ 3u
11
+ 5u
9
+ 4u
7
+ 2u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
22
+ 12u
21
+ 34u
20
+ 68u
19
+ 118u
18
+ 192u
17
+ 251u
16
+ 335u
15
+ 353u
14
+ 392u
13
+
355u
12
+316u
11
+243u
10
+163u
9
+106u
8
+46u
7
+14u
6
+11u
5
+15u
4
+30u
3
+15u
2
+13u+6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ 47u
22
+ ··· 11u + 1
c
2
, c
4
u
23
11u
22
+ ··· 9u + 1
c
3
, c
7
u
23
u
22
+ ··· + 2048u + 1024
c
5
, c
10
u
23
2u
22
+ ··· + 2u 1
c
6
u
23
10u
22
+ ··· + 120u 31
c
8
, c
12
u
23
+ 24u
21
+ ··· + 2u + 1
c
9
u
23
+ 2u
22
+ ··· 15u
2
8
c
11
u
23
+ 12u
22
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
211y
22
+ ··· 215y 1
c
2
, c
4
y
23
47y
22
+ ··· 11y 1
c
3
, c
7
y
23
+ 63y
22
+ ··· + 8912896y 1048576
c
5
, c
10
y
23
+ 12y
22
+ ··· 2y 1
c
6
y
23
12y
22
+ ··· 6122y 961
c
8
, c
12
y
23
+ 48y
22
+ ··· 2y 1
c
9
y
23
12y
22
+ ··· 240y 64
c
11
y
23
+ 24y
21
+ ··· + 2y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.695674 + 0.794301I
a = 0.38303 + 1.50526I
b = 2.14604 0.04602I
15.4705 + 2.6332I 1.74115 2.82837I
u = 0.695674 0.794301I
a = 0.38303 1.50526I
b = 2.14604 + 0.04602I
15.4705 2.6332I 1.74115 + 2.82837I
u = 0.851428 + 0.257921I
a = 0.102425 + 0.901741I
b = 2.23097 0.23648I
18.5278 + 5.0308I 2.42173 1.77619I
u = 0.851428 0.257921I
a = 0.102425 0.901741I
b = 2.23097 + 0.23648I
18.5278 5.0308I 2.42173 + 1.77619I
u = 0.483954 + 1.020520I
a = 0.825387 0.274069I
b = 0.223453 + 0.115878I
0.56646 3.01940I 3.36749 + 3.11832I
u = 0.483954 1.020520I
a = 0.825387 + 0.274069I
b = 0.223453 0.115878I
0.56646 + 3.01940I 3.36749 3.11832I
u = 0.364715 + 1.105530I
a = 0.392472 0.466255I
b = 0.334457 0.705017I
3.74014 + 1.10612I 5.73854 0.32981I
u = 0.364715 1.105530I
a = 0.392472 + 0.466255I
b = 0.334457 + 0.705017I
3.74014 1.10612I 5.73854 + 0.32981I
u = 0.518947 + 1.123690I
a = 0.425430 + 0.139303I
b = 0.028115 + 0.688429I
2.62716 + 6.50806I 2.44317 6.43144I
u = 0.518947 1.123690I
a = 0.425430 0.139303I
b = 0.028115 0.688429I
2.62716 6.50806I 2.44317 + 6.43144I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.213623 + 0.731187I
a = 0.66221 1.37892I
b = 0.994946 + 0.319082I
2.09274 + 1.02920I 5.56905 0.54720I
u = 0.213623 0.731187I
a = 0.66221 + 1.37892I
b = 0.994946 0.319082I
2.09274 1.02920I 5.56905 + 0.54720I
u = 0.449726 + 1.155180I
a = 2.55174 + 1.46474I
b = 1.68340 0.16500I
6.16024 4.07736I 6.51340 + 3.55333I
u = 0.449726 1.155180I
a = 2.55174 1.46474I
b = 1.68340 + 0.16500I
6.16024 + 4.07736I 6.51340 3.55333I
u = 0.490965 + 0.550455I
a = 0.503661 + 0.280792I
b = 0.106838 0.230098I
0.861404 1.022110I 5.67905 + 4.33251I
u = 0.490965 0.550455I
a = 0.503661 0.280792I
b = 0.106838 + 0.230098I
0.861404 + 1.022110I 5.67905 4.33251I
u = 0.276568 + 1.232250I
a = 2.87251 0.51904I
b = 2.32781 0.18898I
16.1704 + 1.4493I 7.34390 + 0.38241I
u = 0.276568 1.232250I
a = 2.87251 + 0.51904I
b = 2.32781 + 0.18898I
16.1704 1.4493I 7.34390 0.38241I
u = 0.653892 + 0.258897I
a = 0.330772 + 0.501247I
b = 0.038798 0.528699I
0.16241 1.94681I 1.33418 + 3.65595I
u = 0.653892 0.258897I
a = 0.330772 0.501247I
b = 0.038798 + 0.528699I
0.16241 + 1.94681I 1.33418 3.65595I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.568317 + 1.180040I
a = 2.01303 2.60561I
b = 2.23769 + 0.30194I
18.1942 10.2590I 5.29878 + 5.24355I
u = 0.568317 1.180040I
a = 2.01303 + 2.60561I
b = 2.23769 0.30194I
18.1942 + 10.2590I 5.29878 5.24355I
u = 0.651787
a = 1.03569
b = 1.49862
3.01079 2.62200
7
II. I
u
2
= hb + 1, u
3
+ u
2
+ a, u
4
+ u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
u
3
u
2
1
a
6
=
1
u
2
a
2
=
u
3
u
2
1
1
a
1
=
1
0
a
4
=
u
3
u
2
1
a
10
=
u
u
3
+ u
a
12
=
u
3
u
2
a
9
=
u
3
u
3
+ u
a
7
=
u
3
+ u
2
+ u + 1
u
a
8
=
u
3
+ u
2
+ u + 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
4u
2
u 2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
8
u
4
+ u
2
+ u + 1
c
6
u
4
2u
3
+ 3u
2
u + 1
c
9
u
4
3u
3
+ 4u
2
3u + 2
c
10
, c
12
u
4
+ u
2
u + 1
c
11
u
4
+ 2u
3
+ 3u
2
+ u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
8
, c
10
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
6
, c
11
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
9
y
4
y
3
+ 2y
2
+ 7y + 4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.442547 + 0.966840I
b = 1.00000
0.66484 1.39709I 0.08162 + 2.95607I
u = 0.547424 0.585652I
a = 0.442547 0.966840I
b = 1.00000
0.66484 + 1.39709I 0.08162 2.95607I
u = 0.547424 + 1.120870I
a = 0.94255 1.62772I
b = 1.00000
4.26996 + 7.64338I 4.41838 7.23121I
u = 0.547424 1.120870I
a = 0.94255 + 1.62772I
b = 1.00000
4.26996 7.64338I 4.41838 + 7.23121I
11
III. I
u
3
= hb + 1, u
3
+ a u + 1, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
u
3
+ u 1
1
a
6
=
1
u
2
a
2
=
u
3
+ u 2
1
a
1
=
1
0
a
4
=
u
3
+ u 1
1
a
10
=
u
u
3
+ u
a
12
=
u
3
u
5
+ u
3
+ u
a
9
=
u
3
u
3
+ u
a
7
=
u
4
+ u
2
u + 1
u
5
+ 2u
3
u
2
+ u 1
a
8
=
u
4
+ u
2
u + 1
u
5
+ 2u
3
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
+ 3u
3
+ u
2
+ 4u 5
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
8
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
6
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
9
(u
3
+ u
2
1)
2
c
10
, c
12
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
11
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
8
, c
10
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
6
, c
11
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
9
(y
3
y
2
+ 2y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.122561 + 0.744862I
b = 1.00000
1.91067 2.82812I 4.05004 + 3.74291I
u = 0.498832 1.001300I
a = 0.122561 0.744862I
b = 1.00000
1.91067 + 2.82812I 4.05004 3.74291I
u = 0.284920 + 1.115140I
a = 1.75488
b = 1.00000
6.04826 7.19479 + 0.27335I
u = 0.284920 1.115140I
a = 1.75488
b = 1.00000
6.04826 7.19479 0.27335I
u = 0.713912 + 0.305839I
a = 0.122561 + 0.744862I
b = 1.00000
1.91067 2.82812I 1.25517 + 3.34054I
u = 0.713912 0.305839I
a = 0.122561 0.744862I
b = 1.00000
1.91067 + 2.82812I 1.25517 3.34054I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
23
+ 47u
22
+ ··· 11u + 1)
c
2
((u 1)
10
)(u
23
11u
22
+ ··· 9u + 1)
c
3
, c
7
u
10
(u
23
u
22
+ ··· + 2048u + 1024)
c
4
((u + 1)
10
)(u
23
11u
22
+ ··· 9u + 1)
c
5
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
23
2u
22
+ ··· + 2u 1)
c
6
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
23
10u
22
+ ··· + 120u 31)
c
8
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
23
+ 24u
21
+ ··· + 2u + 1)
c
9
((u
3
+ u
2
1)
2
)(u
4
3u
3
+ ··· 3u + 2)(u
23
+ 2u
22
+ ··· 15u
2
8)
c
10
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
23
2u
22
+ ··· + 2u 1)
c
11
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
23
+ 12u
22
+ ··· 2u 1)
c
12
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
23
+ 24u
21
+ ··· + 2u + 1)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
23
211y
22
+ ··· 215y 1)
c
2
, c
4
((y 1)
10
)(y
23
47y
22
+ ··· 11y 1)
c
3
, c
7
y
10
(y
23
+ 63y
22
+ ··· + 8912896y 1048576)
c
5
, c
10
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
23
+ 12y
22
+ ··· 2y 1)
c
6
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
23
12y
22
+ ··· 6122y 961)
c
8
, c
12
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
23
+ 48y
22
+ ··· 2y 1)
c
9
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
23
12y
22
+ ··· 240y 64)
c
11
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
23
+ 24y
21
+ ··· + 2y 1)
17