12n
0199
(K12n
0199
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 11 3 12 5 6 9 8
Solving Sequence
5,10
6 11
3,7
2 1 4 9 12 8
c
5
c
10
c
6
c
2
c
1
c
4
c
9
c
11
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
10
+ u
9
+ 5u
8
3u
7
9u
6
+ 7u
4
+ 4u
3
3u
2
+ b + u + 1,
u
10
u
9
5u
8
+ 3u
7
+ 9u
6
7u
4
5u
3
+ 3u
2
+ a + u 1,
u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
8u
6
8u
5
+ 9u
3
2u
2
+ 1i
I
u
2
= hb + 1, u
3
+ a + 2u 1, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 17 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
10
+ u
9
+ · · · + b + 1, u
10
u
9
+ · · · + a 1, u
11
2u
10
+ · · · 2u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
u
10
+ u
9
+ 5u
8
3u
7
9u
6
+ 7u
4
+ 5u
3
3u
2
u + 1
u
10
u
9
5u
8
+ 3u
7
+ 9u
6
7u
4
4u
3
+ 3u
2
u 1
a
7
=
u
2
+ 1
u
4
2u
2
a
2
=
u
3
2u
u
10
u
9
5u
8
+ 3u
7
+ 9u
6
7u
4
4u
3
+ 3u
2
u 1
a
1
=
4u
10
3u
9
20u
8
+ 8u
7
+ 32u
6
+ 5u
5
16u
4
18u
3
+ 3u
2
3u 2
2u
10
+ u
9
+ 12u
8
2u
7
24u
6
5u
5
+ 16u
4
+ 10u
3
u
2
+ u + 1
a
4
=
u
10
u
9
4u
8
+ 3u
7
+ 4u
6
4u
3
+ u
2
u
u
10
u
9
4u
8
+ 3u
7
+ 5u
6
+ u
5
3u
4
7u
3
+ 3u
2
1
a
9
=
u
u
a
12
=
u
5
+ 2u
3
+ u
u
5
3u
3
+ u
a
8
=
u
9
+ 4u
7
3u
5
2u
3
u
u
9
5u
7
+ 7u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
10
5u
9
15u
8
+ 17u
7
+ 14u
6
9u
5
4u
4
3u
3
+ 13u
2
18u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
+ 27u
10
+ ··· + 133u + 1
c
2
, c
4
u
11
7u
10
+ ··· 13u + 1
c
3
, c
7
u
11
u
10
+ ··· 64u + 64
c
5
, c
6
, c
9
c
10
u
11
+ 2u
10
4u
9
8u
8
+ 6u
7
+ 8u
6
8u
5
+ 9u
3
+ 2u
2
1
c
8
, c
11
, c
12
u
11
+ 12u
9
+ 38u
7
+ 10u
5
11u
3
2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
159y
10
+ ··· + 14833y 1
c
2
, c
4
y
11
27y
10
+ ··· + 133y 1
c
3
, c
7
y
11
+ 51y
10
+ ··· + 49152y 4096
c
5
, c
6
, c
9
c
10
y
11
12y
10
+ ··· + 4y 1
c
8
, c
11
, c
12
y
11
+ 24y
10
+ ··· + 4y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.556675 + 0.808029I
a = 0.55576 1.52077I
b = 2.58699 + 0.12834I
16.4992 2.6778I 2.70707 + 2.34778I
u = 0.556675 0.808029I
a = 0.55576 + 1.52077I
b = 2.58699 0.12834I
16.4992 + 2.6778I 2.70707 2.34778I
u = 1.26079
a = 1.16164
b = 1.67909
1.10399 6.07670
u = 1.44218 + 0.13979I
a = 0.14841 + 1.46791I
b = 0.179069 0.877965I
4.02973 3.04693I 7.61574 + 3.00651I
u = 1.44218 0.13979I
a = 0.14841 1.46791I
b = 0.179069 + 0.877965I
4.02973 + 3.04693I 7.61574 3.00651I
u = 0.263767 + 0.414640I
a = 0.051496 1.271950I
b = 0.696724 + 0.457926I
1.53989 + 1.03784I 0.63702 4.26648I
u = 0.263767 0.414640I
a = 0.051496 + 1.271950I
b = 0.696724 0.457926I
1.53989 1.03784I 0.63702 + 4.26648I
u = 1.52082
a = 0.186924
b = 0.288918
7.24960 14.5180
u = 0.426077
a = 0.683970
b = 0.0908333
0.618683 16.2830
u = 1.55733 + 0.28677I
a = 2.16041 + 1.82801I
b = 2.43848 0.33867I
16.0730 + 6.7220I 5.60131 2.60237I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55733 0.28677I
a = 2.16041 1.82801I
b = 2.43848 + 0.33867I
16.0730 6.7220I 5.60131 + 2.60237I
6
II. I
u
2
= hb + 1, u
3
+ a + 2u 1, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
u
3
2u + 1
1
a
7
=
u
2
+ 1
u
4
2u
2
a
2
=
u
3
2u
1
a
1
=
1
0
a
4
=
u
3
2u + 1
1
a
9
=
u
u
a
12
=
u
5
+ 2u
3
+ u
u
5
3u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
+ u
4
6u
3
u
2
2u + 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
6
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
8
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
c
9
, c
10
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
11
, c
12
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
6
, c
9
c
10
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
8
, c
11
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.356069 0.921195I
b = 1.00000
4.60518 + 1.97241I 2.71215 3.88360I
u = 0.493180 0.575288I
a = 0.356069 + 0.921195I
b = 1.00000
4.60518 1.97241I 2.71215 + 3.88360I
u = 0.483672
a = 1.85419
b = 1.00000
0.906083 3.38760
u = 1.52087 + 0.16310I
a = 0.645284 + 0.801205I
b = 1.00000
2.05064 4.59213I 6.49628 + 3.92496I
u = 1.52087 0.16310I
a = 0.645284 0.801205I
b = 1.00000
2.05064 + 4.59213I 6.49628 3.92496I
u = 1.53904
a = 1.56737
b = 1.00000
6.01515 6.19550
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
11
+ 27u
10
+ ··· + 133u + 1)
c
2
((u 1)
6
)(u
11
7u
10
+ ··· 13u + 1)
c
3
, c
7
u
6
(u
11
u
10
+ ··· 64u + 64)
c
4
((u + 1)
6
)(u
11
7u
10
+ ··· 13u + 1)
c
5
, c
6
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
· (u
11
+ 2u
10
4u
9
8u
8
+ 6u
7
+ 8u
6
8u
5
+ 9u
3
+ 2u
2
1)
c
8
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
· (u
11
+ 12u
9
+ 38u
7
+ 10u
5
11u
3
2u + 1)
c
9
, c
10
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
· (u
11
+ 2u
10
4u
9
8u
8
+ 6u
7
+ 8u
6
8u
5
+ 9u
3
+ 2u
2
1)
c
11
, c
12
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
· (u
11
+ 12u
9
+ 38u
7
+ 10u
5
11u
3
2u + 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
11
159y
10
+ ··· + 14833y 1)
c
2
, c
4
((y 1)
6
)(y
11
27y
10
+ ··· + 133y 1)
c
3
, c
7
y
6
(y
11
+ 51y
10
+ ··· + 49152y 4096)
c
5
, c
6
, c
9
c
10
(y
6
7y
5
+ ··· 5y + 1)(y
11
12y
10
+ ··· + 4y 1)
c
8
, c
11
, c
12
(y
6
+ 5y
5
+ ··· 5y + 1)(y
11
+ 24y
10
+ ··· + 4y 1)
12