10
144
(K10n
28
)
A knot diagram
1
Linearized knot diagam
5 8 7 6 2 10 3 4 6 7
Solving Sequence
3,7
4 8
2,10
6 5 1 9
c
3
c
7
c
2
c
6
c
5
c
1
c
9
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
8
2u
7
+ 5u
6
6u
5
+ 7u
4
5u
3
+ 3u
2
+ b 2u + 1,
u
9
u
8
+ 5u
7
4u
6
+ 8u
5
5u
4
+ 3u
3
2u
2
+ 2a 2u,
u
10
3u
9
+ 9u
8
16u
7
+ 24u
6
27u
5
+ 23u
4
16u
3
+ 8u
2
4u + 2i
I
u
2
= hu
4
a + u
3
a u
4
+ 2u
2
a u
3
+ au 2u
2
+ b a u, u
5
u
4
+ u
2
a 4u
3
+ a
2
3u
2
+ a 4u 2,
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
I
u
3
= hb + 2u 1, 2a + u, u
2
+ 2i
I
v
1
= ha, b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
8
2u
7
+ · · · + b + 1, u
9
u
8
+ · · · + 2a 2u, u
10
3u
9
+ · · · 4u + 2i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
a
2
=
u
2
+ 1
u
2
a
10
=
1
2
u
9
+
1
2
u
8
+ ··· + u
2
+ u
u
8
+ 2u
7
5u
6
+ 6u
5
7u
4
+ 5u
3
3u
2
+ 2u 1
a
6
=
1
2
u
9
+
3
2
u
8
+ ··· 2u + 2
u
8
2u
7
+ 5u
6
7u
5
+ 7u
4
6u
3
+ 2u
2
u + 1
a
5
=
1
2
u
9
3
2
u
8
+ ··· + 2u 1
u
7
2u
6
+ 4u
5
5u
4
+ 4u
3
3u
2
+ u 1
a
1
=
1
2
u
9
1
2
u
8
+ ··· u
2
u
u
9
2u
8
+ 6u
7
8u
6
+ 11u
5
9u
4
+ 6u
3
3u
2
+ u 1
a
9
=
u
3
+ 2u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
9
+ 6u
8
18u
7
+ 26u
6
38u
5
+ 28u
4
18u
3
+ 4u
2
+ 2u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
, c
10
u
10
+ u
9
u
8
2u
7
+ 3u
6
+ 4u
5
4u
3
+ u + 1
c
2
, c
3
, c
7
u
10
+ 3u
9
+ 9u
8
+ 16u
7
+ 24u
6
+ 27u
5
+ 23u
4
+ 16u
3
+ 8u
2
+ 4u + 2
c
4
u
10
+ 3u
9
+ 11u
8
+ 18u
7
+ 33u
6
+ 32u
5
+ 34u
4
+ 18u
3
+ 8u
2
+ u + 1
c
8
u
10
3u
9
+ 3u
8
8u
6
+ 17u
5
+ 17u
4
58u
3
+ 48u
2
16u + 10
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
, c
10
y
10
3y
9
+ 11y
8
18y
7
+ 33y
6
32y
5
+ 34y
4
18y
3
+ 8y
2
y + 1
c
2
, c
3
, c
7
y
10
+ 9y
9
+ ··· + 16y + 4
c
4
y
10
+ 13y
9
+ ··· + 15y + 1
c
8
y
10
3y
9
+ ··· + 704y + 100
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.880108 + 0.189454I
a = 0.91534 1.10455I
b = 0.474443 0.824770I
3.61170 + 6.23908I 1.40880 5.42921I
u = 0.880108 0.189454I
a = 0.91534 + 1.10455I
b = 0.474443 + 0.824770I
3.61170 6.23908I 1.40880 + 5.42921I
u = 0.453532 + 1.055340I
a = 0.931418 + 0.352143I
b = 0.363378 + 0.743264I
0.94791 1.45588I 3.02190 + 1.71983I
u = 0.453532 1.055340I
a = 0.931418 0.352143I
b = 0.363378 0.743264I
0.94791 + 1.45588I 3.02190 1.71983I
u = 0.246909 + 0.578012I
a = 0.485195 + 0.815685I
b = 0.178372 + 0.508008I
0.143235 1.179710I 1.77268 + 5.86187I
u = 0.246909 0.578012I
a = 0.485195 0.815685I
b = 0.178372 0.508008I
0.143235 + 1.179710I 1.77268 5.86187I
u = 0.38382 + 1.39954I
a = 0.279302 + 0.892816I
b = 0.00363 + 3.07096I
1.41581 + 10.79660I 5.84814 6.97307I
u = 0.38382 1.39954I
a = 0.279302 0.892816I
b = 0.00363 3.07096I
1.41581 10.79660I 5.84814 + 6.97307I
u = 0.02945 + 1.49900I
a = 0.221969 0.511453I
b = 0.51256 2.49603I
7.11290 1.33139I 5.94848 + 5.33149I
u = 0.02945 1.49900I
a = 0.221969 + 0.511453I
b = 0.51256 + 2.49603I
7.11290 + 1.33139I 5.94848 5.33149I
5
II. I
u
2
= hu
4
a u
4
+ · · · + b a, u
5
u
4
+ u
2
a 4u
3
+ a
2
3u
2
+ a 4u
2, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
a
2
=
u
2
+ 1
u
2
a
10
=
a
u
4
a u
3
a + u
4
2u
2
a + u
3
au + 2u
2
+ a + u
a
6
=
u
3
a + u
4
+ u
3
au + 2u
2
+ u + 1
u
5
a + u
4
a + u
3
a + u
4
+ u
2
a + u
3
+ u
2
+ u
a
5
=
u
5
+ u
4
+ 3u
3
+ 2u
2
+ 2u + 1
u
5
a + u
4
a + u
5
+ 2u
3
a + u
4
+ u
2
a + 2u
3
+ u
2
+ u
a
1
=
a
u
4
a + u
3
a u
4
+ u
2
a u
3
+ au 2u
2
a u
a
9
=
u
3
+ 2u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
3
+ 8u
2
+ 4u 2
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
9
, c
10
u
12
+ u
11
2u
10
4u
9
+ u
8
+ 5u
7
u
6
7u
5
u
4
+ 9u
3
+ 6u
2
2u 3
c
2
, c
3
, c
7
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
2
c
4
u
12
+ 5u
11
+ ··· + 40u + 9
c
8
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
, c
10
y
12
5y
11
+ ··· 40y + 9
c
2
, c
3
, c
7
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
2
c
4
y
12
+ 3y
11
+ ··· 196y + 81
c
8
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0.881252 + 1.009130I
b = 0.186123 + 0.436575I
4.37022 0.269500
u = 0.873214
a = 0.881252 1.009130I
b = 0.186123 0.436575I
4.37022 0.269500
u = 0.138835 + 1.234450I
a = 0.185128 1.031140I
b = 0.02999 3.18010I
6.25011 + 1.97241I 7.42428 3.68478I
u = 0.138835 + 1.234450I
a = 0.319451 + 0.688377I
b = 1.23755 + 0.99495I
6.25011 + 1.97241I 7.42428 3.68478I
u = 0.138835 1.234450I
a = 0.185128 + 1.031140I
b = 0.02999 + 3.18010I
6.25011 1.97241I 7.42428 + 3.68478I
u = 0.138835 1.234450I
a = 0.319451 0.688377I
b = 1.23755 0.99495I
6.25011 1.97241I 7.42428 + 3.68478I
u = 0.408802 + 1.276380I
a = 0.340041 + 0.871835I
b = 0.11686 + 2.25474I
0.40571 4.59213I 3.41886 + 3.20482I
u = 0.408802 + 1.276380I
a = 0.802059 + 0.171737I
b = 0.869443 + 0.391246I
0.40571 4.59213I 3.41886 + 3.20482I
u = 0.408802 1.276380I
a = 0.340041 0.871835I
b = 0.11686 2.25474I
0.40571 + 4.59213I 3.41886 3.20482I
u = 0.408802 1.276380I
a = 0.802059 0.171737I
b = 0.869443 0.391246I
0.40571 + 4.59213I 3.41886 3.20482I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.413150
a = 1.61251
b = 1.08931
2.55102 1.41680
u = 0.413150
a = 2.78320
b = 0.448389
2.55102 1.41680
10
III. I
u
3
= hb + 2u 1, 2a + u, u
2
+ 2i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
2
a
8
=
u
u
a
2
=
1
2
a
10
=
1
2
u
2u + 1
a
6
=
1
2
u
u + 1
a
5
=
1
2
u + 1
u + 3
a
1
=
1
2
u
u + 1
a
9
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u + 1)
2
c
2
, c
3
, c
7
c
8
u
2
+ 2
c
4
, c
5
, c
9
c
10
(u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
9
, c
10
(y 1)
2
c
2
, c
3
, c
7
c
8
(y + 2)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.707107I
b = 1.00000 2.82843I
8.22467 12.0000
u = 1.414210I
a = 0.707107I
b = 1.00000 + 2.82843I
8.22467 12.0000
14
IV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
1
0
a
4
=
1
0
a
8
=
1
0
a
2
=
1
0
a
10
=
0
1
a
6
=
1
1
a
5
=
0
1
a
1
=
1
1
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
u 1
c
2
, c
3
, c
7
c
8
u
c
5
, c
9
, c
10
u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
9
, c
10
y 1
c
2
, c
3
, c
7
c
8
y
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u 1)(u + 1)
2
(u
10
+ u
9
u
8
2u
7
+ 3u
6
+ 4u
5
4u
3
+ u + 1)
· (u
12
+ u
11
2u
10
4u
9
+ u
8
+ 5u
7
u
6
7u
5
u
4
+ 9u
3
+ 6u
2
2u 3)
c
2
, c
3
, c
7
u(u
2
+ 2)(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
2
· (u
10
+ 3u
9
+ 9u
8
+ 16u
7
+ 24u
6
+ 27u
5
+ 23u
4
+ 16u
3
+ 8u
2
+ 4u + 2)
c
4
(u 1)
3
· (u
10
+ 3u
9
+ 11u
8
+ 18u
7
+ 33u
6
+ 32u
5
+ 34u
4
+ 18u
3
+ 8u
2
+ u + 1)
· (u
12
+ 5u
11
+ ··· + 40u + 9)
c
5
, c
9
, c
10
(u 1)
2
(u + 1)(u
10
+ u
9
u
8
2u
7
+ 3u
6
+ 4u
5
4u
3
+ u + 1)
· (u
12
+ u
11
2u
10
4u
9
+ u
8
+ 5u
7
u
6
7u
5
u
4
+ 9u
3
+ 6u
2
2u 3)
c
8
u(u
2
+ 2)(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
2
· (u
10
3u
9
+ 3u
8
8u
6
+ 17u
5
+ 17u
4
58u
3
+ 48u
2
16u + 10)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
9
, c
10
(y 1)
3
· (y
10
3y
9
+ 11y
8
18y
7
+ 33y
6
32y
5
+ 34y
4
18y
3
+ 8y
2
y + 1)
· (y
12
5y
11
+ ··· 40y + 9)
c
2
, c
3
, c
7
y(y + 2)
2
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
2
· (y
10
+ 9y
9
+ ··· + 16y + 4)
c
4
((y 1)
3
)(y
10
+ 13y
9
+ ··· + 15y + 1)(y
12
+ 3y
11
+ ··· 196y + 81)
c
8
y(y + 2)
2
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
2
· (y
10
3y
9
+ ··· + 704y + 100)
20