12n
0201
(K12n
0201
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 11 3 12 5 8 6 10
Solving Sequence
3,5
2 1
4,10
9 6 12 8 7 11
c
2
c
1
c
4
c
9
c
5
c
12
c
8
c
7
c
11
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h5.14997 × 10
27
u
29
+ 1.82430 × 10
28
u
28
+ ··· + 1.93982 × 10
29
b + 5.49324 × 10
27
,
4.70210 × 10
29
u
29
+ 1.55178 × 10
30
u
28
+ ··· + 1.61005 × 10
31
a + 6.19868 × 10
31
,
u
30
+ 5u
29
+ ··· 172u 16i
I
u
2
= h−5u
4
a
3
6u
4
a
2
+ ··· 20a + 39, 6u
4
a
2
+ 6u
4
a + ··· + 5a 50, u
5
+ u
4
3u
3
2u
2
+ 2u 1i
I
u
3
= h−u
14
5u
13
6u
12
+ 9u
11
+ 26u
10
+ 10u
9
21u
8
15u
7
+ 6u
6
7u
5
19u
4
+ 2u
3
+ 15u
2
+ b + 3u 3,
3u
14
+ 15u
13
+ ··· + a + 3,
u
15
+ 5u
14
+ 6u
13
9u
12
25u
11
7u
10
+ 22u
9
+ 10u
8
11u
7
+ 7u
6
+ 18u
5
6u
4
15u
3
+ 4u 1i
I
u
4
= ha
2
+ 2b a + 2, a
3
+ 2a + 1, u 1i
I
u
5
= h−13u
5
a
3
13u
5
a
2
+ ··· + a + 2, u
5
a
3
3u
5
a
2
+ ··· 31a + 33, u
6
+ u
5
2u
4
+ 2u
2
2u 1i
I
u
6
= h−a
3
+ b 2a + 1, a
4
a
3
+ 2a
2
2a + 1, u 1i
* 6 irreducible components of dim
C
= 0, with total 96 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h5.15×10
27
u
29
+1.82×10
28
u
28
+· · ·+1.94×10
29
b+5.49×10
27
, 4.70×10
29
u
29
+
1.55 × 10
30
u
28
+ · · · + 1.61 × 10
31
a + 6.20 × 10
31
, u
30
+ 5u
29
+ · · · 172u 16i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
10
=
0.0292047u
29
0.0963807u
28
+ ··· + 15.3253u 3.84999
0.0265487u
29
0.0940447u
28
+ ··· + 5.13027u 0.0283182
a
9
=
0.0292047u
29
0.0963807u
28
+ ··· + 15.3253u 3.84999
0.0239871u
29
+ 0.113617u
28
+ ··· 2.94099u 0.822600
a
6
=
0.0333701u
29
0.154719u
28
+ ··· + 4.11599u + 2.89975
0.0107619u
29
0.0419176u
28
+ ··· + 0.102195u + 0.142700
a
12
=
0.0442756u
29
+ 0.200796u
28
+ ··· 3.91736u 2.44196
0.00562573u
29
0.00670684u
28
+ ··· 1.22478u 0.441173
a
8
=
0.0525283u
29
+ 0.229276u
28
+ ··· + 1.10359u 4.04234
0.0233792u
29
+ 0.0945798u
28
+ ··· + 0.173151u 0.289600
a
7
=
0.0291491u
29
+ 0.134696u
28
+ ··· + 0.930435u 3.75274
0.0233792u
29
+ 0.0945798u
28
+ ··· + 0.173151u 0.289600
a
11
=
0.168494u
29
+ 0.707380u
28
+ ··· 22.8757u 5.50128
0.00570701u
29
0.0157006u
28
+ ··· + 0.569930u 0.316142
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.406284u
29
1.66706u
28
+ ··· + 56.3610u 5.50399
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 27u
29
+ ··· + 35696u + 256
c
2
, c
4
u
30
5u
29
+ ··· + 172u 16
c
3
, c
7
u
30
6u
29
+ ··· + 736u + 128
c
5
, c
6
, c
9
c
11
u
30
+ 10u
28
+ ··· + u 1
c
8
u
30
+ 24u
29
+ ··· + 34816u + 2048
c
10
, c
12
u
30
u
29
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
43y
29
+ ··· 1144368896y + 65536
c
2
, c
4
y
30
27y
29
+ ··· 35696y + 256
c
3
, c
7
y
30
+ 12y
29
+ ··· 289792y + 16384
c
5
, c
6
, c
9
c
11
y
30
+ 20y
29
+ ··· 5y + 1
c
8
y
30
+ 12y
29
+ ··· 46137344y + 4194304
c
10
, c
12
y
30
23y
29
+ ··· 40y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.185580 + 0.944093I
a = 1.001730 + 0.055927I
b = 1.130640 0.094807I
0.96646 3.13608I 4.74984 + 4.49793I
u = 0.185580 0.944093I
a = 1.001730 0.055927I
b = 1.130640 + 0.094807I
0.96646 + 3.13608I 4.74984 4.49793I
u = 1.09059
a = 0.312198
b = 1.15451
2.10768 1.10790
u = 0.640861 + 0.910736I
a = 0.987047 0.263529I
b = 0.763609 0.165945I
6.62408 + 4.56917I 5.77654 9.05645I
u = 0.640861 0.910736I
a = 0.987047 + 0.263529I
b = 0.763609 + 0.165945I
6.62408 4.56917I 5.77654 + 9.05645I
u = 0.412058 + 1.046100I
a = 1.320550 0.089510I
b = 1.142840 + 0.316503I
2.28381 11.34220I 5.85157 + 7.46971I
u = 0.412058 1.046100I
a = 1.320550 + 0.089510I
b = 1.142840 0.316503I
2.28381 + 11.34220I 5.85157 7.46971I
u = 0.858059 + 0.076225I
a = 0.40465 1.62711I
b = 0.221594 0.481448I
8.06685 + 5.26278I 9.69455 9.24591I
u = 0.858059 0.076225I
a = 0.40465 + 1.62711I
b = 0.221594 + 0.481448I
8.06685 5.26278I 9.69455 + 9.24591I
u = 0.697419 + 0.488961I
a = 0.219398 + 0.713511I
b = 0.189158 0.686223I
3.18199 1.29456I 12.77780 2.70196I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697419 0.488961I
a = 0.219398 0.713511I
b = 0.189158 + 0.686223I
3.18199 + 1.29456I 12.77780 + 2.70196I
u = 0.980322 + 0.821398I
a = 0.268522 + 0.673529I
b = 0.414628 + 0.219363I
5.73142 + 1.70454I 14.08727 0.46304I
u = 0.980322 0.821398I
a = 0.268522 0.673529I
b = 0.414628 0.219363I
5.73142 1.70454I 14.08727 + 0.46304I
u = 0.983080 + 0.840486I
a = 0.207226 0.993870I
b = 0.217086 0.194262I
0.63688 + 4.93892I 8.17431 4.19554I
u = 0.983080 0.840486I
a = 0.207226 + 0.993870I
b = 0.217086 + 0.194262I
0.63688 4.93892I 8.17431 + 4.19554I
u = 0.529897 + 0.387033I
a = 0.760579 + 0.099172I
b = 0.272048 0.498030I
0.616430 1.153860I 7.46498 + 5.62168I
u = 0.529897 0.387033I
a = 0.760579 0.099172I
b = 0.272048 + 0.498030I
0.616430 + 1.153860I 7.46498 5.62168I
u = 1.329220 + 0.243682I
a = 0.323500 + 0.469369I
b = 1.88537 0.37732I
4.25514 1.03783I 6.94488 + 3.56711I
u = 1.329220 0.243682I
a = 0.323500 0.469369I
b = 1.88537 + 0.37732I
4.25514 + 1.03783I 6.94488 3.56711I
u = 1.46779 + 0.42678I
a = 0.428034 0.659397I
b = 1.77991 0.18253I
6.26616 + 8.18280I 7.69035 5.49765I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46779 0.42678I
a = 0.428034 + 0.659397I
b = 1.77991 + 0.18253I
6.26616 8.18280I 7.69035 + 5.49765I
u = 1.57146 + 0.14677I
a = 0.578643 + 0.350914I
b = 2.02947 + 0.31224I
10.76200 + 3.67525I 12.88309 1.54091I
u = 1.57146 0.14677I
a = 0.578643 0.350914I
b = 2.02947 0.31224I
10.76200 3.67525I 12.88309 + 1.54091I
u = 1.56632 + 0.22150I
a = 0.528754 0.726360I
b = 1.94785 0.95867I
0.77063 8.39049I 8.00000 + 5.59781I
u = 1.56632 0.22150I
a = 0.528754 + 0.726360I
b = 1.94785 + 0.95867I
0.77063 + 8.39049I 8.00000 5.59781I
u = 1.54411 + 0.40410I
a = 0.646501 + 0.789954I
b = 2.35333 + 0.65826I
3.9951 + 16.5974I 8.00000 7.96952I
u = 1.54411 0.40410I
a = 0.646501 0.789954I
b = 2.35333 0.65826I
3.9951 16.5974I 8.00000 + 7.96952I
u = 1.64278 + 0.07145I
a = 0.548824 0.489947I
b = 1.50370 0.48413I
9.12603 2.01137I 11.51571 + 3.04989I
u = 1.64278 0.07145I
a = 0.548824 + 0.489947I
b = 1.50370 + 0.48413I
9.12603 + 2.01137I 11.51571 3.04989I
u = 0.0869836
a = 5.20191
b = 0.522412
0.887138 11.1170
7
II. I
u
2
= h−5u
4
a
3
6u
4
a
2
+ · · · 20a + 39, 6u
4
a
2
+ 6u
4
a + · · · + 5a
50, u
5
+ u
4
3u
3
2u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
10
=
a
0.172414a
3
u
4
+ 0.206897a
2
u
4
+ ··· + 0.689655a 1.34483
a
9
=
a
0.172414a
3
u
4
+ 0.206897a
2
u
4
+ ··· + 0.689655a 1.34483
a
6
=
a
2
u
0.448276a
3
u
4
1.13793a
2
u
4
+ ··· + 0.206897a + 0.896552
a
12
=
0.206897a
3
u
4
0.448276a
2
u
4
+ ··· + 1.17241a + 4.41379
0.551724a
3
u
4
0.862069a
2
u
4
+ ··· + 0.793103a + 3.10345
a
8
=
1
u
3
+ 2u 1
a
7
=
u
3
2u
u
3
+ 2u 1
a
11
=
0.172414a
3
u
4
0.206897a
2
u
4
+ ··· + 1.31034a + 1.34483
0.310345a
3
u
4
0.172414a
2
u
4
+ ··· 0.241379a 1.37931
(ii) Obstruction class = 1
(iii) Cusp Shapes =
20
29
u
4
a
3
24
29
u
4
a
2
+ ··· +
36
29
a
18
29
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 7u
4
+ 17u
3
+ 14u
2
+ 1)
4
c
2
, c
4
(u
5
u
4
3u
3
+ 2u
2
+ 2u + 1)
4
c
3
, c
7
(u
5
+ 3u
4
+ 6u
3
+ 7u
2
+ 4u + 2)
4
c
5
, c
6
, c
9
c
11
u
20
+ u
19
+ ··· 88u + 43
c
8
(u
2
u + 1)
10
c
10
, c
12
u
20
3u
19
+ ··· 204u + 61
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
15y
4
+ 93y
3
210y
2
28y 1)
4
c
2
, c
4
(y
5
7y
4
+ 17y
3
14y
2
1)
4
c
3
, c
7
(y
5
+ 3y
4
+ 2y
3
13y
2
12y 4)
4
c
5
, c
6
, c
9
c
11
y
20
+ 9y
19
+ ··· + 8424y + 1849
c
8
(y
2
+ y + 1)
10
c
10
, c
12
y
20
7y
19
+ ··· + 49640y + 3721
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.331409 + 0.386277I
a = 1.34411 + 1.58943I
b = 1.46009 + 0.56077I
4.56162 + 0.89106I 2.71808 + 2.59039I
u = 0.331409 + 0.386277I
a = 2.21697 + 1.44611I
b = 1.55827 1.58798I
4.56162 3.16871I 2.71808 + 9.51860I
u = 0.331409 + 0.386277I
a = 2.71697 0.58008I
b = 0.264187 + 0.240329I
4.56162 3.16871I 2.71808 + 9.51860I
u = 0.331409 + 0.386277I
a = 1.84411 2.45545I
b = 0.94003 + 1.23377I
4.56162 + 0.89106I 2.71808 + 2.59039I
u = 0.331409 0.386277I
a = 1.34411 1.58943I
b = 1.46009 0.56077I
4.56162 0.89106I 2.71808 2.59039I
u = 0.331409 0.386277I
a = 2.21697 1.44611I
b = 1.55827 + 1.58798I
4.56162 + 3.16871I 2.71808 9.51860I
u = 0.331409 0.386277I
a = 2.71697 + 0.58008I
b = 0.264187 0.240329I
4.56162 + 3.16871I 2.71808 9.51860I
u = 0.331409 0.386277I
a = 1.84411 + 2.45545I
b = 0.94003 1.23377I
4.56162 0.89106I 2.71808 2.59039I
u = 1.49784
a = 0.736571 + 0.258832I
b = 2.15778 + 0.06792I
3.58001 2.02988I 8.28576 + 3.46410I
u = 1.49784
a = 0.736571 0.258832I
b = 2.15778 0.06792I
3.58001 + 2.02988I 8.28576 3.46410I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.49784
a = 0.236571 + 0.607193I
b = 1.35362 + 1.32492I
3.58001 2.02988I 8.28576 + 3.46410I
u = 1.49784
a = 0.236571 0.607193I
b = 1.35362 1.32492I
3.58001 + 2.02988I 8.28576 3.46410I
u = 1.58033 + 0.28256I
a = 0.950991 0.218765I
b = 2.22328 0.39754I
8.52888 + 9.02707I 9.13904 7.01094I
u = 1.58033 + 0.28256I
a = 0.723737 + 0.541697I
b = 2.02311 + 0.30398I
8.52888 + 4.96731I 9.13904 0.08273I
u = 1.58033 + 0.28256I
a = 0.450991 0.647260I
b = 2.26931 0.79527I
8.52888 + 9.02707I 9.13904 7.01094I
u = 1.58033 + 0.28256I
a = 0.223737 + 0.324328I
b = 0.967085 + 0.252556I
8.52888 + 4.96731I 9.13904 0.08273I
u = 1.58033 0.28256I
a = 0.950991 + 0.218765I
b = 2.22328 + 0.39754I
8.52888 9.02707I 9.13904 + 7.01094I
u = 1.58033 0.28256I
a = 0.723737 0.541697I
b = 2.02311 0.30398I
8.52888 4.96731I 9.13904 + 0.08273I
u = 1.58033 0.28256I
a = 0.450991 + 0.647260I
b = 2.26931 + 0.79527I
8.52888 9.02707I 9.13904 + 7.01094I
u = 1.58033 0.28256I
a = 0.223737 0.324328I
b = 0.967085 0.252556I
8.52888 4.96731I 9.13904 + 0.08273I
12
III.
I
u
3
= h−u
14
5u
13
+· · ·+b3, 3u
14
+15u
13
+· · ·+a+3, u
15
+5u
14
+· · ·+4u1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
10
=
3u
14
15u
13
+ ··· + 10u 3
u
14
+ 5u
13
+ ··· 3u + 3
a
9
=
3u
14
15u
13
+ ··· + 10u 3
3u
14
+ 13u
13
+ ··· 24u
2
+ 3
a
6
=
4u
14
+ 19u
13
+ ··· 5u + 9
2u
14
+ 11u
13
+ ··· 7u
2
7u
a
12
=
u
12
+ 4u
11
+ 3u
10
8u
9
14u
8
u
7
+ 9u
6
2u
4
+ 9u
3
+ 6u
2
4u 3
2u
14
7u
13
+ ··· + 16u
2
3u
a
8
=
u
12
3u
11
+ ··· + 4u 1
2u
14
+ 8u
13
+ ··· 8u
2
+ 3u
a
7
=
2u
14
8u
13
+ ··· + u 1
2u
14
+ 8u
13
+ ··· 8u
2
+ 3u
a
11
=
3u
14
15u
13
+ ··· + 10u 2
2u
14
+ 9u
13
+ ··· 3u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
14
+15u
13
+23u
12
4u
11
48u
10
46u
9
7u
8
4u
7
21u
6
+4u
5
+30u
4
+16u
3
4u
2
u3
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
13u
14
+ ··· + 16u 1
c
2
u
15
+ 5u
14
+ ··· + 4u 1
c
3
u
15
u
14
+ ··· 8u
2
1
c
4
u
15
5u
14
+ ··· + 4u + 1
c
5
, c
11
u
15
+ 7u
13
+ ··· u + 1
c
6
, c
9
u
15
+ 7u
13
+ ··· u 1
c
7
u
15
+ u
14
+ ··· + 8u
2
+ 1
c
8
u
15
+ 5u
13
+ ··· + u 1
c
10
, c
12
u
15
+ u
14
+ ··· + 5u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
17y
14
+ ··· 8y 1
c
2
, c
4
y
15
13y
14
+ ··· + 16y 1
c
3
, c
7
y
15
+ 3y
14
+ ··· 16y 1
c
5
, c
6
, c
9
c
11
y
15
+ 14y
14
+ ··· + 3y 1
c
8
y
15
+ 10y
14
+ ··· + y 1
c
10
, c
12
y
15
y
14
+ ··· 10y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.796754 + 0.693348I
a = 0.847137 + 0.671365I
b = 0.497650 0.022952I
6.79252 + 3.72902I 3.12247 0.91109I
u = 0.796754 0.693348I
a = 0.847137 0.671365I
b = 0.497650 + 0.022952I
6.79252 3.72902I 3.12247 + 0.91109I
u = 0.930890 + 0.056485I
a = 0.285629 + 1.354480I
b = 4.78949 + 1.58588I
3.42636 + 1.92079I 18.2159 15.3647I
u = 0.930890 0.056485I
a = 0.285629 1.354480I
b = 4.78949 1.58588I
3.42636 1.92079I 18.2159 + 15.3647I
u = 0.401039 + 0.815529I
a = 0.507179 + 0.227656I
b = 0.692924 0.171185I
2.12132 2.26307I 9.68770 + 3.58355I
u = 0.401039 0.815529I
a = 0.507179 0.227656I
b = 0.692924 + 0.171185I
2.12132 + 2.26307I 9.68770 3.58355I
u = 0.989330 + 0.711734I
a = 0.287415 0.801453I
b = 0.343746 0.514545I
6.20548 + 1.67451I 3.16227 0.38526I
u = 0.989330 0.711734I
a = 0.287415 + 0.801453I
b = 0.343746 + 0.514545I
6.20548 1.67451I 3.16227 + 0.38526I
u = 1.36474
a = 0.285599
b = 1.95225
4.46149 9.01920
u = 1.46931 + 0.07528I
a = 0.353185 + 1.029040I
b = 1.57621 + 0.50876I
1.37277 + 3.16303I 7.59589 1.64203I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.46931 0.07528I
a = 0.353185 1.029040I
b = 1.57621 0.50876I
1.37277 3.16303I 7.59589 + 1.64203I
u = 1.56575 + 0.31338I
a = 0.532385 0.260435I
b = 1.78333 0.18434I
8.65053 + 6.60987I 9.62356 4.91898I
u = 1.56575 0.31338I
a = 0.532385 + 0.260435I
b = 1.78333 + 0.18434I
8.65053 6.60987I 9.62356 + 4.91898I
u = 0.306844 + 0.131865I
a = 2.53053 + 3.22263I
b = 0.87409 1.42027I
4.53074 2.24627I 3.40718 + 0.47377I
u = 0.306844 0.131865I
a = 2.53053 3.22263I
b = 0.87409 + 1.42027I
4.53074 + 2.24627I 3.40718 0.47377I
17
IV. I
u
4
= ha
2
+ 2b a + 2, a
3
+ 2a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
1
a
2
=
1
1
a
1
=
0
1
a
4
=
1
0
a
10
=
a
1
2
a
2
+
1
2
a 1
a
9
=
a
1
2
a
2
1
2
a 1
a
6
=
a
2
1
2
a
2
+
1
2
a
12
=
a
2
1
2
a
2
3
2
a
8
=
a
2
a 1
0
a
7
=
a
2
a 1
0
a
11
=
a
2
2a 1
1
2
a
2
+
1
2
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
4
a
2
+
1
2
a
97
4
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
7
u
3
c
4
(u + 1)
3
c
5
, c
6
u
3
+ 2u 1
c
8
u
3
3u
2
+ 5u 2
c
9
, c
10
, c
11
c
12
u
3
+ 2u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
7
y
3
c
5
, c
6
, c
9
c
10
, c
11
, c
12
y
3
+ 4y
2
+ 4y 1
c
8
y
3
+ y
2
+ 13y 4
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.22670 + 1.46771I
b = 0.164742 + 0.401127I
7.79580 5.13794I 15.1998 2.0943I
u = 1.00000
a = 0.22670 1.46771I
b = 0.164742 0.401127I
7.79580 + 5.13794I 15.1998 + 2.0943I
u = 1.00000
a = 0.453398
b = 1.32948
2.43213 25.3500
21
V. I
u
5
= h−13u
5
a
3
13u
5
a
2
+ · · · + a + 2, u
5
a
3
3u
5
a
2
+ · · · 31a +
33, u
6
+ u
5
2u
4
+ 2u
2
2u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
10
=
a
1.18182a
3
u
5
+ 1.18182a
2
u
5
+ ··· 0.0909091a 0.181818
a
9
=
a
1.18182a
3
u
5
+ 1.18182a
2
u
5
+ ··· 0.0909091a 0.181818
a
6
=
a
2
u
0.909091a
3
u
5
1.09091a
2
u
5
+ ··· 0.454545a + 1.09091
a
12
=
1.09091a
3
u
5
0.909091a
2
u
5
+ ··· 0.545455a + 2.90909
2.45455a
3
u
5
2.45455a
2
u
5
+ ··· + 0.727273a 0.545455
a
8
=
u
5
+ 2u
3
2u
2
u + 3
u
5
u
3
+ u
2
u
a
7
=
2u
5
+ 3u
3
3u
2
+ 3
u
5
u
3
+ u
2
u
a
11
=
0.454545a
3
u
5
0.545455a
2
u
5
+ ··· 2.72727a + 5.54545
0.181818a
3
u
5
+ 0.818182a
2
u
5
+ ··· + 0.0909091a + 0.181818
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
11
u
5
a
3
+
48
11
u
5
a
2
+ ··· +
20
11
a
70
11
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 5u
5
+ 8u
4
+ 6u
3
+ 8u
2
+ 8u + 1)
4
c
2
, c
4
(u
6
u
5
2u
4
+ 2u
2
+ 2u 1)
4
c
3
, c
7
(u
3
u
2
+ 2u 1)
8
c
5
, c
6
, c
9
c
11
u
24
+ u
23
+ ··· 14u + 67
c
8
(u
2
u + 1)
12
c
10
, c
12
u
24
7u
23
+ ··· 122u + 61
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
9y
5
+ 20y
4
+ 14y
3
16y
2
48y + 1)
4
c
2
, c
4
(y
6
5y
5
+ 8y
4
6y
3
+ 8y
2
8y + 1)
4
c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
8
c
5
, c
6
, c
9
c
11
y
24
+ 21y
23
+ ··· + 24192y + 4489
c
8
(y
2
+ y + 1)
12
c
10
, c
12
y
24
+ 5y
23
+ ··· 37820y + 3721
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.592989 + 0.847544I
a = 0.929183 0.410221I
b = 0.885713 0.329153I
1.37919 0.79824I 7.50976 0.48465I
u = 0.592989 + 0.847544I
a = 1.026620 0.271921I
b = 0.997939 0.570659I
1.37919 4.85801I 7.50976 + 6.44355I
u = 0.592989 + 0.847544I
a = 0.515331 1.058190I
b = 0.1116080 0.0764541I
1.37919 4.85801I 7.50976 + 6.44355I
u = 0.592989 + 0.847544I
a = 0.478377 + 0.632485I
b = 0.117869 0.114876I
1.37919 0.79824I 7.50976 0.48465I
u = 0.592989 0.847544I
a = 0.929183 + 0.410221I
b = 0.885713 + 0.329153I
1.37919 + 0.79824I 7.50976 + 0.48465I
u = 0.592989 0.847544I
a = 1.026620 + 0.271921I
b = 0.997939 + 0.570659I
1.37919 + 4.85801I 7.50976 6.44355I
u = 0.592989 0.847544I
a = 0.515331 + 1.058190I
b = 0.1116080 + 0.0764541I
1.37919 + 4.85801I 7.50976 6.44355I
u = 0.592989 0.847544I
a = 0.478377 0.632485I
b = 0.117869 + 0.114876I
1.37919 + 0.79824I 7.50976 + 0.48465I
u = 1.13416
a = 0.385031 + 0.931825I
b = 0.34379 + 5.37612I
2.75839 2.02988I 0.98049 + 3.46410I
u = 1.13416
a = 0.385031 0.931825I
b = 0.34379 5.37612I
2.75839 + 2.02988I 0.98049 3.46410I
25
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.13416
a = 0.217824 + 1.221440I
b = 2.14651 + 1.06279I
2.75839 + 2.02988I 0.98049 3.46410I
u = 1.13416
a = 0.217824 1.221440I
b = 2.14651 1.06279I
2.75839 2.02988I 0.98049 + 3.46410I
u = 1.47043 + 0.10268I
a = 0.155430 + 0.985327I
b = 0.719608 0.619193I
1.37919 + 4.85801I 7.50976 6.44355I
u = 1.47043 + 0.10268I
a = 0.848595 0.875871I
b = 2.24219 1.17501I
1.37919 + 4.85801I 7.50976 6.44355I
u = 1.47043 + 0.10268I
a = 0.074026 1.295000I
b = 0.039244 1.020410I
1.37919 + 0.79824I 7.50976 + 0.48465I
u = 1.47043 + 0.10268I
a = 0.177765 + 0.639970I
b = 2.27588 + 0.59891I
1.37919 + 0.79824I 7.50976 + 0.48465I
u = 1.47043 0.10268I
a = 0.155430 0.985327I
b = 0.719608 + 0.619193I
1.37919 4.85801I 7.50976 + 6.44355I
u = 1.47043 0.10268I
a = 0.848595 + 0.875871I
b = 2.24219 + 1.17501I
1.37919 4.85801I 7.50976 + 6.44355I
u = 1.47043 0.10268I
a = 0.074026 + 1.295000I
b = 0.039244 + 1.020410I
1.37919 0.79824I 7.50976 0.48465I
u = 1.47043 0.10268I
a = 0.177765 0.639970I
b = 2.27588 0.59891I
1.37919 0.79824I 7.50976 0.48465I
26
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.379278
a = 1.80591 + 0.63475I
b = 0.436714 + 0.501880I
2.75839 2.02988I 0.98049 + 3.46410I
u = 0.379278
a = 1.80591 0.63475I
b = 0.436714 0.501880I
2.75839 + 2.02988I 0.98049 3.46410I
u = 0.379278
a = 0.31076 + 3.22443I
b = 0.271129 + 0.788683I
2.75839 + 2.02988I 0.98049 3.46410I
u = 0.379278
a = 0.31076 3.22443I
b = 0.271129 0.788683I
2.75839 2.02988I 0.98049 + 3.46410I
27
VI. I
u
6
= h−a
3
+ b 2a + 1, a
4
a
3
+ 2a
2
2a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
1
a
2
=
1
1
a
1
=
0
1
a
4
=
1
0
a
10
=
a
a
3
+ 2a 1
a
9
=
a
a
3
+ a 1
a
6
=
a
2
a
3
+ a
2
a + 2
a
12
=
a
2
a
3
a
a
8
=
1
0
a
7
=
1
0
a
11
=
a
3
a + 1
a
3
+ 2a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
+ 4a 12
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
8
(u
2
+ u + 1)
2
c
9
, c
10
, c
11
c
12
u
4
u
3
+ 2u
2
2u + 1
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
9
c
10
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
8
(y
2
+ y + 1)
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.621744 + 0.440597I
b = 0.121744 + 1.306620I
1.64493 2.02988I 10.00000 + 3.46410I
u = 1.00000
a = 0.621744 0.440597I
b = 0.121744 1.306620I
1.64493 + 2.02988I 10.00000 3.46410I
u = 1.00000
a = 0.121744 + 1.306620I
b = 0.621744 + 0.440597I
1.64493 + 2.02988I 10.00000 3.46410I
u = 1.00000
a = 0.121744 1.306620I
b = 0.621744 0.440597I
1.64493 2.02988I 10.00000 + 3.46410I
31
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
7
(u
5
+ 7u
4
+ 17u
3
+ 14u
2
+ 1)
4
· ((u
6
+ 5u
5
+ ··· + 8u + 1)
4
)(u
15
13u
14
+ ··· + 16u 1)
· (u
30
+ 27u
29
+ ··· + 35696u + 256)
c
2
(u 1)
7
(u
5
u
4
3u
3
+ 2u
2
+ 2u + 1)
4
· ((u
6
u
5
2u
4
+ 2u
2
+ 2u 1)
4
)(u
15
+ 5u
14
+ ··· + 4u 1)
· (u
30
5u
29
+ ··· + 172u 16)
c
3
u
7
(u
3
u
2
+ 2u 1)
8
(u
5
+ 3u
4
+ 6u
3
+ 7u
2
+ 4u + 2)
4
· (u
15
u
14
+ ··· 8u
2
1)(u
30
6u
29
+ ··· + 736u + 128)
c
4
(u + 1)
7
(u
5
u
4
3u
3
+ 2u
2
+ 2u + 1)
4
· ((u
6
u
5
2u
4
+ 2u
2
+ 2u 1)
4
)(u
15
5u
14
+ ··· + 4u + 1)
· (u
30
5u
29
+ ··· + 172u 16)
c
5
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
15
+ 7u
13
+ ··· u + 1)
· (u
20
+ u
19
+ ··· 88u + 43)(u
24
+ u
23
+ ··· 14u + 67)
· (u
30
+ 10u
28
+ ··· + u 1)
c
6
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
15
+ 7u
13
+ ··· u 1)
· (u
20
+ u
19
+ ··· 88u + 43)(u
24
+ u
23
+ ··· 14u + 67)
· (u
30
+ 10u
28
+ ··· + u 1)
c
7
u
7
(u
3
u
2
+ 2u 1)
8
(u
5
+ 3u
4
+ 6u
3
+ 7u
2
+ 4u + 2)
4
· (u
15
+ u
14
+ ··· + 8u
2
+ 1)(u
30
6u
29
+ ··· + 736u + 128)
c
8
((u
2
u + 1)
22
)(u
2
+ u + 1)
2
(u
3
3u
2
+ 5u 2)(u
15
+ 5u
13
+ ··· + u 1)
· (u
30
+ 24u
29
+ ··· + 34816u + 2048)
c
9
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
15
+ 7u
13
+ ··· u 1)
· (u
20
+ u
19
+ ··· 88u + 43)(u
24
+ u
23
+ ··· 14u + 67)
· (u
30
+ 10u
28
+ ··· + u 1)
c
10
, c
12
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
15
+ u
14
+ ··· + 5u
2
+ 1)
· (u
20
3u
19
+ ··· 204u + 61)(u
24
7u
23
+ ··· 122u + 61)
· (u
30
u
29
+ ··· 2u + 1)
c
11
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
15
+ 7u
13
+ ··· u + 1)
· (u
20
+ u
19
+ ··· 88u + 43)(u
24
+ u
23
+ ··· 14u + 67)
· (u
30
+ 10u
28
+ ··· + u 1)
32
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
7
(y
5
15y
4
+ 93y
3
210y
2
28y 1)
4
· (y
6
9y
5
+ 20y
4
+ 14y
3
16y
2
48y + 1)
4
· (y
15
17y
14
+ ··· 8y 1)
· (y
30
43y
29
+ ··· 1144368896y + 65536)
c
2
, c
4
(y 1)
7
(y
5
7y
4
+ 17y
3
14y
2
1)
4
· ((y
6
5y
5
+ ··· 8y + 1)
4
)(y
15
13y
14
+ ··· + 16y 1)
· (y
30
27y
29
+ ··· 35696y + 256)
c
3
, c
7
y
7
(y
3
+ 3y
2
+ 2y 1)
8
(y
5
+ 3y
4
+ 2y
3
13y
2
12y 4)
4
· (y
15
+ 3y
14
+ ··· 16y 1)(y
30
+ 12y
29
+ ··· 289792y + 16384)
c
5
, c
6
, c
9
c
11
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
15
+ 14y
14
+ ··· + 3y 1)
· (y
20
+ 9y
19
+ ··· + 8424y + 1849)
· (y
24
+ 21y
23
+ ··· + 24192y + 4489)(y
30
+ 20y
29
+ ··· 5y + 1)
c
8
((y
2
+ y + 1)
24
)(y
3
+ y
2
+ 13y 4)(y
15
+ 10y
14
+ ··· + y 1)
· (y
30
+ 12y
29
+ ··· 46137344y + 4194304)
c
10
, c
12
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
15
y
14
+ ··· 10y 1)
· (y
20
7y
19
+ ··· + 49640y + 3721)
· (y
24
+ 5y
23
+ ··· 37820y + 3721)(y
30
23y
29
+ ··· 40y + 1)
33