12n
0205
(K12n
0205
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 12 9 3 11 5 8 6 10
Solving Sequence
3,5
2 1
4,10
9 12 6 7 11 8
c
2
c
1
c
4
c
9
c
12
c
5
c
6
c
11
c
8
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.70976 × 10
62
u
52
3.03954 × 10
60
u
51
+ ··· + 8.90112 × 10
63
b 1.06077 × 10
64
,
1.10028 × 10
63
u
52
1.18132 × 10
64
u
51
+ ··· + 9.89014 × 10
62
a 1.33065 × 10
64
,
u
53
+ 11u
52
+ ··· + 27u + 1i
I
u
2
= ha
6
+ 2a
4
+ 3a
2
+ b + 2, a
9
a
8
+ 2a
7
a
6
+ 3a
5
a
4
+ 2a
3
+ a + 1, u 1i
I
u
3
= hu
5
+ 4u
4
+ 3u
3
2u
2
+ 3b 3u 1, a, u
6
+ u
5
u
4
2u
3
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.71 × 10
62
u
52
3.04 × 10
60
u
51
+ · · · + 8.90 × 10
63
b 1.06 ×
10
64
, 1.10 × 10
63
u
52
1.18 × 10
64
u
51
+ · · · + 9.89 × 10
62
a 1.33 ×
10
64
, u
53
+ 11u
52
+ · · · + 27u + 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
10
=
1.11250u
52
+ 11.9444u
51
+ ··· + 116.277u + 13.4543
0.0192084u
52
+ 0.000341478u
51
+ ··· + 15.5915u + 1.19173
a
9
=
1.11250u
52
+ 11.9444u
51
+ ··· + 116.277u + 13.4543
0.382334u
52
3.37450u
51
+ ··· + 8.79186u + 0.898684
a
12
=
0.851461u
52
9.05934u
51
+ ··· 65.4023u 7.59764
0.902652u
52
+ 8.13404u
51
+ ··· + 10.0567u 0.0126855
a
6
=
0.0355732u
52
0.584596u
51
+ ··· + 13.1513u 0.387998
0.349645u
52
+ 3.23765u
51
+ ··· + 1.90889u + 0.0261483
a
7
=
0.130529u
52
+ 1.68645u
51
+ ··· + 35.4466u + 5.88903
0.154225u
52
+ 1.43278u
51
+ ··· + 4.53267u + 0.381154
a
11
=
0.284754u
52
3.11922u
51
+ ··· 39.9792u 6.27018
0.427550u
52
+ 3.88507u
51
+ ··· 1.47440u 0.445947
a
8
=
0.284754u
52
+ 3.11922u
51
+ ··· + 39.9792u + 6.27018
0.154225u
52
+ 1.43278u
51
+ ··· + 4.53267u + 0.381154
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.225150u
52
2.33690u
51
+ ··· 27.9440u 9.85542
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
53
+ 63u
52
+ ··· + 371u + 1
c
2
, c
4
u
53
11u
52
+ ··· + 27u 1
c
3
, c
7
u
53
2u
52
+ ··· + 2560u + 512
c
5
, c
11
u
53
+ 3u
52
+ ··· + 3u + 1
c
6
9(9u
53
30u
52
+ ··· 9820u 5144)
c
8
, c
10
u
53
8u
52
+ ··· + 936u 81
c
9
u
53
+ 2u
52
+ ··· + 22464u 5184
c
12
9(9u
53
6u
52
+ ··· + 279223u 329)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
53
135y
52
+ ··· + 162995y 1
c
2
, c
4
y
53
63y
52
+ ··· + 371y 1
c
3
, c
7
y
53
+ 54y
52
+ ··· + 6815744y 262144
c
5
, c
11
y
53
+ 37y
52
+ ··· + 11y 1
c
6
81(81y
53
3132y
52
+ ··· + 2.63839 × 10
8
y 2.64607 × 10
7
)
c
8
, c
10
y
53
54y
52
+ ··· + 624672y 6561
c
9
y
53
36y
52
+ ··· 140341248y 26873856
c
12
81(81y
53
4590y
52
+ ··· + 7.81268 × 10
10
y 108241)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.740987 + 0.599213I
a = 1.57596 0.73751I
b = 0.321377 0.617776I
4.33713 4.43867I 10.24927 + 6.85756I
u = 0.740987 0.599213I
a = 1.57596 + 0.73751I
b = 0.321377 + 0.617776I
4.33713 + 4.43867I 10.24927 6.85756I
u = 1.029610 + 0.245825I
a = 0.125397 + 0.344874I
b = 0.310362 + 0.858643I
2.07856 0.90512I 0
u = 1.029610 0.245825I
a = 0.125397 0.344874I
b = 0.310362 0.858643I
2.07856 + 0.90512I 0
u = 1.014220 + 0.368097I
a = 0.17089 + 1.53157I
b = 1.88007 0.54448I
7.18708 1.12498I 14.8807 + 0.I
u = 1.014220 0.368097I
a = 0.17089 1.53157I
b = 1.88007 + 0.54448I
7.18708 + 1.12498I 14.8807 + 0.I
u = 1.14783
a = 0.526566
b = 2.18865
2.44483 0
u = 0.822832 + 0.202810I
a = 0.184579 0.579850I
b = 0.34533 + 2.28724I
3.14584 0.60875I 6.43020 7.79756I
u = 0.822832 0.202810I
a = 0.184579 + 0.579850I
b = 0.34533 2.28724I
3.14584 + 0.60875I 6.43020 + 7.79756I
u = 0.724671 + 0.356426I
a = 0.056116 + 0.976114I
b = 0.178762 + 0.417119I
0.78284 1.50580I 1.85337 + 3.47450I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.724671 0.356426I
a = 0.056116 0.976114I
b = 0.178762 0.417119I
0.78284 + 1.50580I 1.85337 3.47450I
u = 1.229490 + 0.119531I
a = 1.077010 + 0.000602I
b = 2.50917 + 2.03905I
5.64518 + 2.18249I 0
u = 1.229490 0.119531I
a = 1.077010 0.000602I
b = 2.50917 2.03905I
5.64518 2.18249I 0
u = 0.578578 + 0.484586I
a = 1.018420 + 0.280436I
b = 0.415921 + 0.414378I
0.90481 1.57510I 3.08858 + 5.02134I
u = 0.578578 0.484586I
a = 1.018420 0.280436I
b = 0.415921 0.414378I
0.90481 + 1.57510I 3.08858 5.02134I
u = 0.708934 + 0.120407I
a = 0.92683 1.44462I
b = 0.469500 0.468379I
4.72794 6.87040I 1.05460 + 3.48446I
u = 0.708934 0.120407I
a = 0.92683 + 1.44462I
b = 0.469500 + 0.468379I
4.72794 + 6.87040I 1.05460 3.48446I
u = 1.188110 + 0.522041I
a = 0.065515 0.516096I
b = 0.181732 0.422617I
1.55881 + 5.25423I 0
u = 1.188110 0.522041I
a = 0.065515 + 0.516096I
b = 0.181732 + 0.422617I
1.55881 5.25423I 0
u = 0.713723 + 1.108540I
a = 1.145180 + 0.691529I
b = 1.004520 + 0.127758I
11.4354 9.7069I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.713723 1.108540I
a = 1.145180 0.691529I
b = 1.004520 0.127758I
11.4354 + 9.7069I 0
u = 0.645363 + 1.159150I
a = 0.411472 + 1.090720I
b = 0.475717 + 0.405091I
11.21080 + 2.39200I 0
u = 0.645363 1.159150I
a = 0.411472 1.090720I
b = 0.475717 0.405091I
11.21080 2.39200I 0
u = 0.536755 + 0.402568I
a = 0.923406 0.659788I
b = 0.89484 1.39101I
3.70920 + 0.68240I 10.13112 + 2.63548I
u = 0.536755 0.402568I
a = 0.923406 + 0.659788I
b = 0.89484 + 1.39101I
3.70920 0.68240I 10.13112 2.63548I
u = 0.709864 + 1.162520I
a = 0.713217 0.733177I
b = 0.685394 0.156529I
6.83584 3.76717I 0
u = 0.709864 1.162520I
a = 0.713217 + 0.733177I
b = 0.685394 + 0.156529I
6.83584 + 3.76717I 0
u = 0.190058 + 0.453543I
a = 1.217760 + 0.413382I
b = 0.101388 + 0.374695I
1.01456 1.24993I 3.91266 + 3.38096I
u = 0.190058 0.453543I
a = 1.217760 0.413382I
b = 0.101388 0.374695I
1.01456 + 1.24993I 3.91266 3.38096I
u = 1.63891 + 0.08655I
a = 0.523277 0.000961I
b = 2.42482 0.70129I
11.54620 + 0.81534I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63891 0.08655I
a = 0.523277 + 0.000961I
b = 2.42482 + 0.70129I
11.54620 0.81534I 0
u = 1.65289 + 0.15939I
a = 0.875260 0.410425I
b = 2.21311 0.23469I
8.77075 + 4.08365I 0
u = 1.65289 0.15939I
a = 0.875260 + 0.410425I
b = 2.21311 + 0.23469I
8.77075 4.08365I 0
u = 1.70501 + 0.03615I
a = 0.395981 0.689977I
b = 1.41927 + 0.04910I
12.33890 + 1.47775I 0
u = 1.70501 0.03615I
a = 0.395981 + 0.689977I
b = 1.41927 0.04910I
12.33890 1.47775I 0
u = 1.70201 + 0.18739I
a = 1.42791 + 0.60902I
b = 2.95092 + 0.61814I
12.9006 + 7.5876I 0
u = 1.70201 0.18739I
a = 1.42791 0.60902I
b = 2.95092 0.61814I
12.9006 7.5876I 0
u = 0.276292 + 0.038780I
a = 3.14779 2.19159I
b = 0.509597 0.650771I
1.03321 + 2.55519I 0.02559 3.47308I
u = 0.276292 0.038780I
a = 3.14779 + 2.19159I
b = 0.509597 + 0.650771I
1.03321 2.55519I 0.02559 + 3.47308I
u = 1.73015 + 0.03085I
a = 0.952566 0.310448I
b = 2.31647 0.61550I
13.7945 + 6.0358I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.73015 0.03085I
a = 0.952566 + 0.310448I
b = 2.31647 + 0.61550I
13.7945 6.0358I 0
u = 1.69334 + 0.39921I
a = 1.073220 0.496311I
b = 2.64306 0.19760I
19.2132 + 15.4269I 0
u = 1.69334 0.39921I
a = 1.073220 + 0.496311I
b = 2.64306 + 0.19760I
19.2132 15.4269I 0
u = 1.70276 + 0.44597I
a = 0.904826 0.036221I
b = 1.90592 + 0.31921I
18.7129 + 3.6964I 0
u = 1.70276 0.44597I
a = 0.904826 + 0.036221I
b = 1.90592 0.31921I
18.7129 3.6964I 0
u = 1.71139 + 0.41302I
a = 0.918462 + 0.320773I
b = 2.22054 + 0.11225I
14.6527 + 9.7412I 0
u = 1.71139 0.41302I
a = 0.918462 0.320773I
b = 2.22054 0.11225I
14.6527 9.7412I 0
u = 1.76059
a = 0.828656
b = 2.05351
9.31076 0
u = 1.76959 + 0.06263I
a = 1.07789 + 1.41573I
b = 1.99778 + 1.80741I
17.5158 + 2.8823I 0
u = 1.76959 0.06263I
a = 1.07789 1.41573I
b = 1.99778 1.80741I
17.5158 2.8823I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.016819 + 0.167581I
a = 4.99549 3.00427I
b = 1.226480 + 0.616758I
4.36101 1.13066I 3.77707 + 1.04050I
u = 0.016819 0.167581I
a = 4.99549 + 3.00427I
b = 1.226480 0.616758I
4.36101 + 1.13066I 3.77707 1.04050I
u = 0.0499663
a = 9.21094
b = 0.593977
1.26040 8.84480
10
II.
I
u
2
= ha
6
+ 2a
4
+ 3a
2
+ b + 2, a
9
a
8
+ 2a
7
a
6
+ 3a
5
a
4
+ 2a
3
+ a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
1
a
2
=
1
1
a
1
=
0
1
a
4
=
1
0
a
10
=
a
a
6
2a
4
3a
2
2
a
9
=
a
a
6
2a
4
3a
2
a 2
a
12
=
a
2
a
7
+ 2a
5
+ 3a
3
+ 2a 1
a
6
=
a
4
a
8
a
6
a
4
+ a
2
+ a + 2
a
7
=
a
6
a
2
0
a
11
=
a
6
a
2
a
6
2a
4
3a
2
2
a
8
=
a
6
a
2
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
8
+ 8a
7
13a
6
+ 9a
5
17a
4
+ 16a
3
13a
2
+ 4a 16
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
7
u
9
c
4
(u + 1)
9
c
5
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
6
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
8
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
9
, c
12
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
10
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
11
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
7
y
9
c
5
, c
11
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
6
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
8
, c
10
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
9
, c
12
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.140343 + 0.966856I
b = 0.218072 + 0.482572I
0.13850 + 2.09337I 4.94317 6.62869I
u = 1.00000
a = 0.140343 0.966856I
b = 0.218072 0.482572I
0.13850 2.09337I 4.94317 + 6.62869I
u = 1.00000
a = 0.628449 + 0.875112I
b = 0.037875 + 0.791187I
2.26187 + 2.45442I 8.11682 3.00529I
u = 1.00000
a = 0.628449 0.875112I
b = 0.037875 0.791187I
2.26187 2.45442I 8.11682 + 3.00529I
u = 1.00000
a = 0.796005 + 0.733148I
b = 0.80973 2.39258I
6.01628 + 1.33617I 10.09079 + 3.07774I
u = 1.00000
a = 0.796005 0.733148I
b = 0.80973 + 2.39258I
6.01628 1.33617I 10.09079 3.07774I
u = 1.00000
a = 0.728966 + 0.986295I
b = 0.417942 + 0.357732I
5.24306 7.08493I 14.1334 + 8.8789I
u = 1.00000
a = 0.728966 0.986295I
b = 0.417942 0.357732I
5.24306 + 7.08493I 14.1334 8.8789I
u = 1.00000
a = 0.512358
b = 2.94345
2.84338 25.4320
14
III. I
u
3
= hu
5
+ 4u
4
+ 3u
3
2u
2
+ 3b 3u 1, a, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
10
=
0
1
3
u
5
4
3
u
4
+ ··· + u +
1
3
a
9
=
0
1
3
u
5
4
3
u
4
+ ··· + u +
1
3
a
12
=
u
2
+ 1
7
9
u
5
14
9
u
4
+ ··· +
11
9
u +
5
9
a
6
=
u
5
2u
3
+ u
2
3
u
5
4
9
u
4
+ ··· +
8
9
u +
1
9
a
7
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
11
=
2u
5
+ 3u
3
2u
4
3
u
5
4
3
u
4
+
2
3
u
2
+
1
3
a
8
=
2u
5
3u
3
+ 2u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
9
u
5
+
47
9
u
4
4
3
u
3
19
9
u
2
20
3
u
80
9
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
2
, c
7
u
6
+ u
5
u
4
2u
3
+ u + 1
c
3
, c
4
u
6
u
5
u
4
+ 2u
3
u + 1
c
6
9(9u
6
12u
5
+ 2u
4
+ u
3
+ 4u
2
4u + 1)
c
8
(u 1)
6
c
9
u
6
c
10
(u + 1)
6
c
11
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
12
9(9u
6
+ 30u
5
+ 41u
4
+ 30u
3
+ 15u
2
+ 5u + 1)
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
11
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
2
, c
3
, c
4
c
7
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
6
81(81y
6
108y
5
+ 100y
4
63y
3
+ 28y
2
8y + 1)
c
8
, c
10
(y 1)
6
c
9
y
6
c
12
81(81y
6
162y
5
+ 151y
4
+ 48y
3
+ 7y
2
+ 5y + 1)
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0
b = 0.49282 2.03411I
3.53554 0.92430I 15.9578 + 1.1630I
u = 1.002190 0.295542I
a = 0
b = 0.49282 + 2.03411I
3.53554 + 0.92430I 15.9578 1.1630I
u = 0.428243 + 0.664531I
a = 0
b = 0.384438 0.080017I
0.245672 0.924305I 7.47464 1.75692I
u = 0.428243 0.664531I
a = 0
b = 0.384438 + 0.080017I
0.245672 + 0.924305I 7.47464 + 1.75692I
u = 1.073950 + 0.558752I
a = 0
b = 0.391622 + 0.105509I
1.64493 + 5.69302I 7.2342 14.2758I
u = 1.073950 0.558752I
a = 0
b = 0.391622 0.105509I
1.64493 5.69302I 7.2342 + 14.2758I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
9
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
53
+ 63u
52
+ ··· + 371u + 1)
c
2
((u 1)
9
)(u
6
+ u
5
+ ··· + u + 1)(u
53
11u
52
+ ··· + 27u 1)
c
3
u
9
(u
6
u
5
+ ··· u + 1)(u
53
2u
52
+ ··· + 2560u + 512)
c
4
((u + 1)
9
)(u
6
u
5
+ ··· u + 1)(u
53
11u
52
+ ··· + 27u 1)
c
5
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
53
+ 3u
52
+ ··· + 3u + 1)
c
6
81(9u
6
12u
5
+ 2u
4
+ u
3
+ 4u
2
4u + 1)
· (u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (9u
53
30u
52
+ ··· 9820u 5144)
c
7
u
9
(u
6
+ u
5
+ ··· + u + 1)(u
53
2u
52
+ ··· + 2560u + 512)
c
8
(u 1)
6
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
53
8u
52
+ ··· + 936u 81)
c
9
u
6
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
53
+ 2u
52
+ ··· + 22464u 5184)
c
10
(u + 1)
6
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
53
8u
52
+ ··· + 936u 81)
c
11
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
53
+ 3u
52
+ ··· + 3u + 1)
c
12
81(9u
6
+ 30u
5
+ 41u
4
+ 30u
3
+ 15u
2
+ 5u + 1)
· (u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (9u
53
6u
52
+ ··· + 279223u 329)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
9
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
53
135y
52
+ ··· + 162995y 1)
c
2
, c
4
(y 1)
9
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
53
63y
52
+ ··· + 371y 1)
c
3
, c
7
y
9
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
53
+ 54y
52
+ ··· + 6815744y 262144)
c
5
, c
11
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
53
+ 37y
52
+ ··· + 11y 1)
c
6
6561(81y
6
108y
5
+ 100y
4
63y
3
+ 28y
2
8y + 1)
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (81y
53
3132y
52
+ ··· + 263838736y 26460736)
c
8
, c
10
(y 1)
6
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
53
54y
52
+ ··· + 624672y 6561)
c
9
y
6
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
53
36y
52
+ ··· 140341248y 26873856)
c
12
6561(81y
6
162y
5
+ 151y
4
+ 48y
3
+ 7y
2
+ 5y + 1)
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (81y
53
4590y
52
+ ··· + 78126767425y 108241)
20