12n
0210
(K12n
0210
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 12 10 4 11 5 8 6 9
Solving Sequence
8,11 4,9
3 7 10 6 12 1 5 2
c
8
c
3
c
7
c
10
c
6
c
11
c
12
c
5
c
2
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h7u
16
135u
15
+ ··· + 256b 55, 79u
16
1263u
15
+ ··· + 256a 1471, u
17
16u
16
+ ··· 11u 1i
I
u
2
= h2202374768a
8
+ 4881742261799b + ··· + 3048286097801a + 1155541803378,
a
9
+ 3a
8
+ 20a
7
+ 27a
6
+ 39a
5
+ 35a
4
+ 54a
3
+ 232a
2
+ 63a + 557, u + 1i
I
u
3
= hb, u
7
2u
6
2u
5
+ 4u
4
+ 2u
3
2u
2
+ a 2, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
* 3 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h7u
16
135u
15
+ · · · + 256b 55, 79u
16
1263u
15
+ · · · + 256a
1471, u
17
16u
16
+ · · · 11u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
4
=
0.308594u
16
+ 4.93359u
15
+ ··· 74.1016u + 5.74609
0.0273438u
16
+ 0.527344u
15
+ ··· 1.53906u + 0.214844
a
9
=
1
u
2
a
3
=
0.335938u
16
+ 5.46094u
15
+ ··· 75.6406u + 5.96094
0.0273438u
16
+ 0.527344u
15
+ ··· 1.53906u + 0.214844
a
7
=
0.0898438u
16
1.35547u
15
+ ··· 24.3828u 4.87109
0.0390625u
16
+ 0.578125u
15
+ ··· + 3.41406u 0.0468750
a
10
=
u
u
a
6
=
0.0546875u
16
0.843750u
15
+ ··· 24.8203u 4.90625
0.00390625u
16
+ 0.0664063u
15
+ ··· + 3.85156u 0.0117188
a
12
=
0.375000u
16
+ 5.94531u
15
+ ··· + 5.21094u 1.42969
0.0429688u
16
0.675781u
15
+ ··· + 3.79688u + 0.199219
a
1
=
0.332031u
16
+ 5.27734u
15
+ ··· + 8.03125u 1.28516
0.0625000u
16
+ 0.617188u
15
+ ··· + 3.53906u + 0.179688
a
5
=
0.121094u
16
1.99609u
15
+ ··· + 25.7266u 2.05859
0.0585938u
16
0.871094u
15
+ ··· + 0.726563u 0.121094
a
2
=
0.242188u
16
+ 3.99219u
15
+ ··· 51.4531u + 4.11719
0.0585938u
16
+ 0.871094u
15
+ ··· 0.726563u + 0.121094
(ii) Obstruction class = 1
(iii) Cusp Shapes =
39
128
u
16
315
64
u
15
+ ··· +
2341
128
u
531
64
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 37u
16
+ ··· + u + 1
c
2
, c
4
u
17
15u
16
+ ··· + 3u 1
c
3
, c
7
u
17
+ u
16
+ ··· + 384u 256
c
5
, c
11
u
17
+ 2u
16
+ ··· + 3u + 1
c
6
u
17
3u
16
+ ··· 167922u 192217
c
8
, c
10
u
17
+ 16u
16
+ ··· 11u + 1
c
9
u
17
+ u
16
+ ··· 512u 512
c
12
u
17
6u
16
+ ··· 19686u + 2393
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
57y
16
+ ··· 7859y 1
c
2
, c
4
y
17
37y
16
+ ··· + y 1
c
3
, c
7
y
17
33y
16
+ ··· + 245760y 65536
c
5
, c
11
y
17
+ 12y
16
+ ··· + 25y 1
c
6
y
17
45y
16
+ ··· + 806894237728y 36947375089
c
8
, c
10
y
17
40y
16
+ ··· + 221y 1
c
9
y
17
39y
16
+ ··· + 3670016y 262144
c
12
y
17
38y
16
+ ··· + 475084108y 5726449
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.135290 + 0.215005I
a = 0.040636 0.276979I
b = 0.149177 0.310693I
0.959539 1.013620I 4.00582 0.77460I
u = 1.135290 0.215005I
a = 0.040636 + 0.276979I
b = 0.149177 + 0.310693I
0.959539 + 1.013620I 4.00582 + 0.77460I
u = 0.706391
a = 0.663382
b = 0.408620
1.02663 10.5660
u = 0.405211 + 0.413893I
a = 0.45966 + 1.59259I
b = 0.690024 + 0.240704I
1.52593 2.30609I 0.84073 + 4.41351I
u = 0.405211 0.413893I
a = 0.45966 1.59259I
b = 0.690024 0.240704I
1.52593 + 2.30609I 0.84073 4.41351I
u = 0.079841 + 0.128622I
a = 1.81733 9.04439I
b = 0.634179 + 0.647207I
4.28789 1.16759I 4.15148 0.42617I
u = 0.079841 0.128622I
a = 1.81733 + 9.04439I
b = 0.634179 0.647207I
4.28789 + 1.16759I 4.15148 + 0.42617I
u = 0.0625865
a = 10.3787
b = 0.442272
1.26971 9.85470
u = 1.95602 + 1.08672I
a = 1.45768 + 3.13444I
b = 2.02549 2.27905I
19.0196 + 12.9458I 0.98224 5.00778I
u = 1.95602 1.08672I
a = 1.45768 3.13444I
b = 2.02549 + 2.27905I
19.0196 12.9458I 0.98224 + 5.00778I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.05027 + 1.05712I
a = 1.67587 2.90707I
b = 2.13688 + 2.10608I
16.2212 + 7.3387I 3.75665 2.42096I
u = 2.05027 1.05712I
a = 1.67587 + 2.90707I
b = 2.13688 2.10608I
16.2212 7.3387I 3.75665 + 2.42096I
u = 2.10513 + 0.95501I
a = 2.03508 + 2.83272I
b = 2.36097 2.01644I
19.0497 + 1.6784I 0.985857 + 0.191287I
u = 2.10513 0.95501I
a = 2.03508 2.83272I
b = 2.36097 + 2.01644I
19.0497 1.6784I 0.985857 0.191287I
u = 2.46829 + 0.15035I
a = 3.58204 0.48409I
b = 3.25130 + 0.32944I
0.61891 + 5.84472I 0.94829 2.62397I
u = 2.46829 0.15035I
a = 3.58204 + 0.48409I
b = 3.25130 0.32944I
0.61891 5.84472I 0.94829 + 2.62397I
u = 2.53085
a = 3.44904
b = 3.15648
3.68181 3.55300
6
II. I
u
2
= h4.88 × 10
12
b + 2.20 × 10
9
a
8
+ · · · + 3.05 × 10
12
a + 1.16 × 10
12
, a
9
+
3a
8
+ · · · + 63a + 557, u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
1
a
4
=
a
0.000451145a
8
0.00112473a
7
+ ··· 0.624426a 0.236707
a
9
=
1
1
a
3
=
0.000451145a
8
0.00112473a
7
+ ··· + 0.375574a 0.236707
0.000451145a
8
0.00112473a
7
+ ··· 0.624426a 0.236707
a
7
=
0.000228701a
8
+ 0.00198520a
7
+ ··· + 0.208285a + 0.748712
0.000596483a
8
0.00336172a
7
+ ··· 0.154624a + 0.0980179
a
10
=
1
1
a
6
=
0.000596483a
8
+ 0.00336172a
7
+ ··· + 0.154624a 0.0980179
0.00142167a
8
0.00473825a
7
+ ··· 0.100963a + 0.944748
a
12
=
0.00210365a
8
+ 0.00495200a
7
+ ··· + 0.412355a + 0.509691
0.00180466a
8
0.00643986a
7
+ ··· 0.540321a 1.18749
a
1
=
0.00240264a
8
+ 0.00346415a
7
+ ··· + 0.284388a 0.168104
0.00210365a
8
0.00495200a
7
+ ··· 0.412355a 0.509691
a
5
=
0.00391662a
8
+ 0.00543003a
7
+ ··· + 0.764313a 0.311168
0.00391662a
8
0.00543003a
7
+ ··· 0.764313a + 0.311168
a
2
=
0.00301433a
8
+ 0.00318056a
7
+ ··· + 0.515461a 0.784582
0.00391662a
8
0.00543003a
7
+ ··· 0.764313a + 0.311168
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
14902841729
4881742261799
a
8
+
166367890500
4881742261799
a
7
+ ··· +
12350657617094
4881742261799
a +
35285795123487
4881742261799
7
(iv) u-Polynomials at the component
8
Crossings u-Polynomials at each crossing
c
1
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
2
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
3
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
4
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
5
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
6
u
9
+ 2u
8
+ 5u
7
+ 22u
6
+ 52u
5
+ 63u
4
+ 41u
3
+ 10u
2
2u 1
c
7
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
8
(u + 1)
9
c
9
u
9
c
10
(u 1)
9
c
11
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
12
u
9
+ 3u
8
+ 3u
7
2u
6
+ u
5
9u
4
+ 3u
3
+ 2u 1
9
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
2
, c
4
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
3
, c
7
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
5
, c
11
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
6
y
9
+ 6y
8
+ ··· + 24y 1
c
8
, c
10
(y 1)
9
c
9
y
9
c
12
y
9
3y
8
+ 23y
7
+ 62y
6
13y
5
57y
4
+ 9y
3
6y
2
+ 4y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.06261 + 1.45114I
b = 0.140343 0.966856I
3.42837 2.09337I 7.05683 + 6.62869I
u = 1.00000
a = 0.06261 1.45114I
b = 0.140343 + 0.966856I
3.42837 + 2.09337I 7.05683 6.62869I
u = 1.00000
a = 1.21902 + 0.95904I
b = 0.628449 0.875112I
1.02799 2.45442I 3.88318 + 3.00529I
u = 1.00000
a = 1.21902 0.95904I
b = 0.628449 + 0.875112I
1.02799 + 2.45442I 3.88318 3.00529I
u = 1.00000
a = 1.91873
b = 0.512358
0.446489 13.4320
u = 1.00000
a = 1.03999 + 1.61486I
b = 0.728966 0.986295I
1.95319 + 7.08493I 2.13339 8.87891I
u = 1.00000
a = 1.03999 1.61486I
b = 0.728966 + 0.986295I
1.95319 7.08493I 2.13339 + 8.87891I
u = 1.00000
a = 0.78228 + 3.85888I
b = 0.796005 0.733148I
2.72642 1.33617I 1.90921 3.07774I
u = 1.00000
a = 0.78228 3.85888I
b = 0.796005 + 0.733148I
2.72642 + 1.33617I 1.90921 + 3.07774I
12
III.
I
u
3
= hb, u
7
2u
6
2u
5
+4u
4
+2u
3
2u
2
+a2, u
8
u
7
3u
6
+2u
5
+3u
4
2u1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
4
=
u
7
+ 2u
6
+ 2u
5
4u
4
2u
3
+ 2u
2
+ 2
0
a
9
=
1
u
2
a
3
=
u
7
+ 2u
6
+ 2u
5
4u
4
2u
3
+ 2u
2
+ 2
0
a
7
=
1
0
a
10
=
u
u
a
6
=
u
2
+ 1
u
2
a
12
=
u
5
2u
3
+ u
u
5
+ u
3
+ u
a
1
=
u
7
2u
5
+ 2u
u
7
u
6
+ 2u
5
+ 3u
4
2u
2
2u 1
a
5
=
u
7
+ 2u
5
2u
u
7
+ u
6
2u
5
3u
4
+ 2u
2
+ 2u + 1
a
2
=
2u
6
4u
4
2u
3
+ 2u
2
+ 2u + 2
u
7
u
6
+ 2u
5
+ 3u
4
2u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
+ 9u
6
u
5
22u
4
3u
3
+ 12u
2
+ 13u + 14
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
6
, c
8
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
9
, c
12
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
10
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
11
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
6
, c
8
, c
10
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
9
, c
12
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 1.21928 2.03110I
b = 0
0.604279 1.131230I 3.30729 4.28492I
u = 1.180120 0.268597I
a = 1.21928 + 2.03110I
b = 0
0.604279 + 1.131230I 3.30729 + 4.28492I
u = 0.108090 + 0.747508I
a = 1.230330 0.083902I
b = 0
3.80435 2.57849I 1.56478 + 3.68514I
u = 0.108090 0.747508I
a = 1.230330 + 0.083902I
b = 0
3.80435 + 2.57849I 1.56478 3.68514I
u = 1.37100
a = 0.337834
b = 0
4.85780 14.7400
u = 1.334530 + 0.318930I
a = 0.370895 0.073482I
b = 0
0.73474 + 6.44354I 8.02705 7.90662I
u = 1.334530 0.318930I
a = 0.370895 + 0.073482I
b = 0
0.73474 6.44354I 8.02705 + 7.90662I
u = 0.463640
a = 2.42604
b = 0
0.799899 9.95010
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
8
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
17
+ 37u
16
+ ··· + u + 1)
c
2
(u 1)
8
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
17
15u
16
+ ··· + 3u 1)
c
3
u
8
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
17
+ u
16
+ ··· + 384u 256)
c
4
(u + 1)
8
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
17
15u
16
+ ··· + 3u 1)
c
5
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
17
+ 2u
16
+ ··· + 3u + 1)
c
6
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
9
+ 2u
8
+ 5u
7
+ 22u
6
+ 52u
5
+ 63u
4
+ 41u
3
+ 10u
2
2u 1)
· (u
17
3u
16
+ ··· 167922u 192217)
c
7
u
8
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
17
+ u
16
+ ··· + 384u 256)
c
8
(u + 1)
9
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
17
+ 16u
16
+ ··· 11u + 1)
c
9
u
9
(u
8
u
7
+ ··· + 2u 1)(u
17
+ u
16
+ ··· 512u 512)
c
10
(u 1)
9
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
17
+ 16u
16
+ ··· 11u + 1)
c
11
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
17
+ 2u
16
+ ··· + 3u + 1)
c
12
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
9
+ 3u
8
+ 3u
7
2u
6
+ u
5
9u
4
+ 3u
3
+ 2u 1)
· (u
17
6u
16
+ ··· 19686u + 2393)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
17
57y
16
+ ··· 7859y 1)
c
2
, c
4
(y 1)
8
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
17
37y
16
+ ··· + y 1)
c
3
, c
7
y
8
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
17
33y
16
+ ··· + 245760y 65536)
c
5
, c
11
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
17
+ 12y
16
+ ··· + 25y 1)
c
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
9
+ 6y
8
+ ··· + 24y 1)
· (y
17
45y
16
+ ··· + 806894237728y 36947375089)
c
8
, c
10
(y 1)
9
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
17
40y
16
+ ··· + 221y 1)
c
9
y
9
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
17
39y
16
+ ··· + 3670016y 262144)
c
12
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
9
3y
8
+ 23y
7
+ 62y
6
13y
5
57y
4
+ 9y
3
6y
2
+ 4y 1)
· (y
17
38y
16
+ ··· + 475084108y 5726449)
18