12n
0211
(K12n
0211
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 11 3 10 5 12 6 8
Solving Sequence
6,9
5
3,10
2 1 4 8 7 12 11
c
5
c
9
c
2
c
1
c
4
c
8
c
7
c
12
c
11
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h13u
16
+ 9u
15
+ ··· + 32b + 15, 21u
16
15u
15
+ ··· + 32a 41,
u
17
+ 3u
15
+ 2u
14
+ 9u
13
+ 4u
12
+ 15u
11
+ 9u
10
+ 23u
9
+ 6u
8
+ 23u
7
+ 5u
6
+ 19u
5
3u
4
+ 11u
3
+ 1i
I
u
2
= h−u
3
+ u
2
+ 2b + 1, u
3
u
2
+ 2a 1, u
4
+ u
2
u + 1i
I
u
3
= h−33675480u
21
+ 230853871u
20
+ ··· + 427516113b + 1988747145,
330664297u
21
+ 1163900912u
20
+ ··· + 1282548339a + 9330160065,
u
22
2u
21
+ ··· 12u + 9i
I
u
4
= hu
5
+ u
4
+ u
3
+ 2u
2
+ b + u + 1, u
5
+ u
4
+ u
3
+ u
2
+ a + u, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
I
u
5
= hau + 5b 3a + u 3, a
2
+ au + 5u 4, u
2
+ 1i
* 5 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h13u
16
+ 9u
15
+ · · · + 32b + 15, 21u
16
15u
15
+ · · · + 32a 41, u
17
+
3u
15
+ · · · + 11u
3
+ 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
3
=
0.656250u
16
+ 0.468750u
15
+ ··· + 2.90625u + 1.28125
0.406250u
16
0.281250u
15
+ ··· 0.343750u 0.468750
a
10
=
u
u
3
+ u
a
2
=
0.468750u
16
+ 0.406250u
15
+ ··· + 3.21875u + 0.343750
0.0937500u
16
0.218750u
15
+ ··· 0.156250u 0.531250
a
1
=
1
2
u
16
+ u
14
+ ···
5
2
u
3
+
5
2
u
1
4
u
16
+
1
2
u
14
+ ···
9
4
u
3
3
4
u
a
4
=
0.281250u
16
+ 0.0937500u
15
+ ··· + 2.53125u + 0.156250
0.531250u
16
+ 0.0937500u
15
+ ··· + 0.281250u + 0.156250
a
8
=
u
3
u
5
+ u
3
+ u
a
7
=
1
4
u
15
+
1
2
u
13
+ ···
5
4
u
2
+
5
4
u
2
a
12
=
1
4
u
16
+
1
2
u
14
+ ···
9
4
u
3
+
9
4
u
u
a
11
=
1
4
u
16
+
1
2
u
14
+ ···
9
4
u
3
+
5
4
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
25
64
u
16
+
61
64
u
15
+ ··· +
639
64
u
133
64
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 25u
16
+ ··· 31u + 16
c
2
, c
4
u
17
5u
16
+ ··· u + 4
c
3
, c
7
u
17
3u
16
+ ··· + 176u + 64
c
5
, c
6
, c
9
c
11
u
17
+ 3u
15
+ ··· + 11u
3
1
c
8
, c
10
u
17
6u
16
+ ··· 6u
2
+ 1
c
12
u
17
+ 19u
15
+ ··· 5u
2
+ 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
61y
16
+ ··· 15103y 256
c
2
, c
4
y
17
25y
16
+ ··· 31y 16
c
3
, c
7
y
17
+ 27y
16
+ ··· + 4352y 4096
c
5
, c
6
, c
9
c
11
y
17
+ 6y
16
+ ··· + 6y
2
1
c
8
, c
10
y
17
+ 18y
16
+ ··· + 12y 1
c
12
y
17
+ 38y
16
+ ··· + 40y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.609453 + 0.805159I
a = 0.854862 0.986654I
b = 0.766890 0.457544I
0.52072 2.33309I 2.02167 + 3.26936I
u = 0.609453 0.805159I
a = 0.854862 + 0.986654I
b = 0.766890 + 0.457544I
0.52072 + 2.33309I 2.02167 3.26936I
u = 0.230202 + 0.870288I
a = 2.22993 0.26645I
b = 0.119488 + 0.657240I
6.16563 1.02177I 6.84477 + 7.08191I
u = 0.230202 0.870288I
a = 2.22993 + 0.26645I
b = 0.119488 0.657240I
6.16563 + 1.02177I 6.84477 7.08191I
u = 0.773626 + 0.937847I
a = 0.606886 0.071826I
b = 1.190660 + 0.370945I
4.38989 + 4.09446I 5.30008 4.36784I
u = 0.773626 0.937847I
a = 0.606886 + 0.071826I
b = 1.190660 0.370945I
4.38989 4.09446I 5.30008 + 4.36784I
u = 1.050610 + 0.636095I
a = 0.407370 + 0.267779I
b = 1.93722 0.60149I
17.5984 0.0758I 7.31042 1.57550I
u = 1.050610 0.636095I
a = 0.407370 0.267779I
b = 1.93722 + 0.60149I
17.5984 + 0.0758I 7.31042 + 1.57550I
u = 0.576669 + 1.098490I
a = 0.263264 0.069567I
b = 0.341659 0.129445I
1.86747 + 7.21175I 3.72852 5.27936I
u = 0.576669 1.098490I
a = 0.263264 + 0.069567I
b = 0.341659 + 0.129445I
1.86747 7.21175I 3.72852 + 5.27936I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.743234 + 1.053510I
a = 0.04444 + 2.04366I
b = 2.07902 + 0.33370I
3.55752 7.80542I 4.29962 + 6.17985I
u = 0.743234 1.053510I
a = 0.04444 2.04366I
b = 2.07902 0.33370I
3.55752 + 7.80542I 4.29962 6.17985I
u = 0.71574 + 1.23305I
a = 0.99869 1.97392I
b = 2.63254 + 0.11082I
13.5091 13.2681I 3.78464 + 6.49717I
u = 0.71574 1.23305I
a = 0.99869 + 1.97392I
b = 2.63254 0.11082I
13.5091 + 13.2681I 3.78464 6.49717I
u = 0.302591 + 0.411010I
a = 0.856584 + 0.998116I
b = 0.086217 0.461654I
0.250655 1.078620I 3.32954 + 6.69723I
u = 0.302591 0.411010I
a = 0.856584 0.998116I
b = 0.086217 + 0.461654I
0.250655 + 1.078620I 3.32954 6.69723I
u = 0.400636
a = 1.24927
b = 0.969091
2.22247 4.42560
6
II. I
u
2
= h−u
3
+ u
2
+ 2b + 1, u
3
u
2
+ 2a 1, u
4
+ u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
3
=
1
2
u
3
+
1
2
u
2
+
1
2
1
2
u
3
1
2
u
2
1
2
a
10
=
u
u
3
+ u
a
2
=
1
2
u
3
+
1
2
u
2
1
2
1
2
u
3
+
1
2
u
2
1
2
a
1
=
1
u
2
a
4
=
1
2
u
3
+
1
2
u
2
+
1
2
1
2
u
3
1
2
u
2
1
2
a
8
=
u
3
u
2
a
7
=
u
3
u
2
a
12
=
u
3
u
2
1
u
a
11
=
u
3
u
2
+ u 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
4
u
3
+
21
4
u
2
1
2
u
17
4
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
u
4
+ u
2
u + 1
c
8
, c
10
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
9
, c
11
u
4
+ u
2
+ u + 1
c
12
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
9
c
11
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
8
, c
10
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
12
y
4
y
3
+ 2y
2
+ 7y + 4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.278726 + 0.483420I
b = 0.677958 0.157780I
2.62503 1.39709I 5.84901 + 3.96898I
u = 0.547424 0.585652I
a = 0.278726 0.483420I
b = 0.677958 + 0.157780I
2.62503 + 1.39709I 5.84901 3.96898I
u = 0.547424 + 1.120870I
a = 0.971274 0.813859I
b = 0.927958 + 0.413327I
0.98010 + 7.64338I 3.77599 8.10462I
u = 0.547424 1.120870I
a = 0.971274 + 0.813859I
b = 0.927958 0.413327I
0.98010 7.64338I 3.77599 + 8.10462I
10
III.
I
u
3
= h−3.37 × 10
7
u
21
+ 2.31 × 10
8
u
20
+ · · · + 4.28 × 10
8
b + 1.99 × 10
9
, 3.31 ×
10
8
u
21
+1.16×10
9
u
20
+· · ·+1.28×10
9
a+9.33×10
9
, u
22
2u
21
+· · ·12u+9i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
3
=
0.257818u
21
0.907491u
20
+ ··· + 8.27519u 7.27470
0.0787701u
21
0.539989u
20
+ ··· + 5.17053u 4.65186
a
10
=
u
u
3
+ u
a
2
=
0.0569753u
21
0.732717u
20
+ ··· + 6.42310u 8.39988
0.147735u
21
0.732052u
20
+ ··· + 6.08589u 6.69407
a
1
=
0.113449u
21
0.132459u
20
+ ··· + 2.54918u 1.84329
0.183373u
21
0.457606u
20
+ ··· + 4.47394u 2.89558
a
4
=
0.325326u
21
+ 0.184523u
20
+ ··· + 0.502711u 2.87359
0.383495u
21
+ 0.177086u
20
+ ··· 0.310468u 2.63640
a
8
=
u
3
u
5
+ u
3
+ u
a
7
=
0.264604u
21
+ 0.445061u
20
+ ··· 3.11735u 0.705220
0.121794u
21
+ 0.190645u
20
+ ··· 0.910828u 1.28085
a
12
=
1
9
u
21
2
9
u
20
+ ··· +
32
9
u
4
3
0.0312057u
21
0.184205u
20
+ ··· + 2.13810u 1.28530
a
11
=
0.142317u
21
0.406427u
20
+ ··· + 5.69365u 2.61863
0.0312057u
21
0.184205u
20
+ ··· + 2.13810u 1.28530
(ii) Obstruction class = 1
(iii) Cusp Shapes =
51496451
142505371
u
21
+
36892662
142505371
u
20
+ ··· +
723246262
142505371
u
1135221198
142505371
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
11
+ 18u
10
+ ··· + 31u + 1)
2
c
2
, c
4
(u
11
4u
10
u
9
+ 17u
8
+ u
7
40u
6
+ 3u
5
+ 37u
4
3u
3
9u
2
+ 7u 1)
2
c
3
, c
7
(u
11
+ u
10
+ ··· 4u + 8)
2
c
5
, c
6
, c
9
c
11
u
22
+ 2u
21
+ ··· + 12u + 9
c
8
, c
10
u
22
10u
21
+ ··· 432u + 81
c
12
(u
11
+ 12u
9
+ 36u
7
+ 2u
6
+ 2u
5
+ 13u
4
+ 13u
3
+ u
2
+ 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
11
46y
10
+ ··· + 863y 1)
2
c
2
, c
4
(y
11
18y
10
+ ··· + 31y 1)
2
c
3
, c
7
(y
11
+ 21y
10
+ ··· + 336y 64)
2
c
5
, c
6
, c
9
c
11
y
22
+ 10y
21
+ ··· + 432y + 81
c
8
, c
10
y
22
+ 2y
21
+ ··· + 12312y + 6561
c
12
(y
11
+ 24y
10
+ ··· 2y 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.545296 + 0.923005I
a = 0.012822 + 0.329575I
b = 0.622069 0.196649I
0.14517 2.25109I 0.29632 + 2.34373I
u = 0.545296 0.923005I
a = 0.012822 0.329575I
b = 0.622069 + 0.196649I
0.14517 + 2.25109I 0.29632 2.34373I
u = 0.858271 + 0.670516I
a = 0.369906 0.478944I
b = 1.92512 + 0.39933I
4.72798 + 1.82060I 6.54374 1.21714I
u = 0.858271 0.670516I
a = 0.369906 + 0.478944I
b = 1.92512 0.39933I
4.72798 1.82060I 6.54374 + 1.21714I
u = 0.240009 + 1.082970I
a = 0.454525 + 0.334757I
b = 0.515438 + 0.609605I
4.11473 8.33208 + 0.I
u = 0.240009 1.082970I
a = 0.454525 0.334757I
b = 0.515438 0.609605I
4.11473 8.33208 + 0.I
u = 0.705045 + 0.879700I
a = 0.12429 1.54454I
b = 0.016245 0.493238I
9.06867 2.70718I 3.52709 + 2.44627I
u = 0.705045 0.879700I
a = 0.12429 + 1.54454I
b = 0.016245 + 0.493238I
9.06867 + 2.70718I 3.52709 2.44627I
u = 0.800202 + 0.827914I
a = 0.14364 1.64878I
b = 0.910452 + 0.422891I
4.72798 + 1.82060I 6.54374 1.21714I
u = 0.800202 0.827914I
a = 0.14364 + 1.64878I
b = 0.910452 0.422891I
4.72798 1.82060I 6.54374 + 1.21714I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.047914 + 1.160270I
a = 2.24792 1.55926I
b = 1.93663 2.04614I
1.59514 + 0.83621I 6.12521 2.51411I
u = 0.047914 1.160270I
a = 2.24792 + 1.55926I
b = 1.93663 + 2.04614I
1.59514 0.83621I 6.12521 + 2.51411I
u = 1.089810 + 0.428144I
a = 0.395831 + 0.234267I
b = 2.55516 0.12719I
16.0296 + 6.7782I 6.17368 2.81310I
u = 1.089810 0.428144I
a = 0.395831 0.234267I
b = 2.55516 + 0.12719I
16.0296 6.7782I 6.17368 + 2.81310I
u = 0.703030 + 0.415587I
a = 0.495039 + 0.546851I
b = 0.195521 0.253083I
0.14517 2.25109I 0.29632 + 2.34373I
u = 0.703030 0.415587I
a = 0.495039 0.546851I
b = 0.195521 + 0.253083I
0.14517 + 2.25109I 0.29632 2.34373I
u = 0.190193 + 0.774835I
a = 2.15826 + 2.04536I
b = 1.52590 + 1.49076I
1.59514 0.83621I 6.12521 + 2.51411I
u = 0.190193 0.774835I
a = 2.15826 2.04536I
b = 1.52590 1.49076I
1.59514 + 0.83621I 6.12521 2.51411I
u = 0.804264 + 1.135210I
a = 0.80264 + 1.70705I
b = 1.69330 0.63124I
16.0296 + 6.7782I 6.17368 2.81310I
u = 0.804264 1.135210I
a = 0.80264 1.70705I
b = 1.69330 + 0.63124I
16.0296 6.7782I 6.17368 + 2.81310I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.11097 + 1.44346I
a = 2.20412 + 0.05114I
b = 2.68367 + 0.72362I
9.06867 + 2.70718I 3.52709 2.44627I
u = 0.11097 1.44346I
a = 2.20412 0.05114I
b = 2.68367 0.72362I
9.06867 2.70718I 3.52709 + 2.44627I
16
IV. I
u
4
= hu
5
+ u
4
+ u
3
+ 2u
2
+ b + u + 1, u
5
+ u
4
+ u
3
+ u
2
+ a + u, u
6
+
u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
3
=
u
5
u
4
u
3
u
2
u
u
5
u
4
u
3
2u
2
u 1
a
10
=
u
u
3
+ u
a
2
=
u
5
u
4
u
3
u
2
u 1
u
5
u
4
u
3
u
2
u 1
a
1
=
1
u
2
a
4
=
u
5
u
4
u
3
u
2
u
u
5
u
4
u
3
2u
2
u 1
a
8
=
u
3
u
5
+ u
3
+ u
a
7
=
u
3
u
5
+ u
3
+ u
a
12
=
u
5
u
4
2u
3
2u
2
2u 2
u
5
+ 2u
3
+ u
2
+ u + 1
a
11
=
u
4
u
2
u 1
u
5
+ 2u
3
+ u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
+ 5u
3
+ u
2
+ 5u 2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
6
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
8
, c
10
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
9
, c
11
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
12
(u
3
u
2
+ 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
6
, c
9
c
11
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
8
, c
10
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
12
(y
3
y
2
+ 2y 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.767394 + 0.943705I
b = 0.521167 0.055259I
1.37919 2.82812I 5.84740 + 3.54173I
u = 0.498832 1.001300I
a = 0.767394 0.943705I
b = 0.521167 + 0.055259I
1.37919 + 2.82812I 5.84740 3.54173I
u = 0.284920 + 1.115140I
a = 1.37744 1.47725I
b = 1.53980 0.84179I
2.75839 6 1.305207 + 0.10I
u = 0.284920 1.115140I
a = 1.37744 + 1.47725I
b = 1.53980 + 0.84179I
2.75839 6 1.305207 + 0.10I
u = 0.713912 + 0.305839I
a = 0.355167 0.198843I
b = 1.060970 + 0.237841I
1.37919 2.82812I 5.84740 + 3.54173I
u = 0.713912 0.305839I
a = 0.355167 + 0.198843I
b = 1.060970 0.237841I
1.37919 + 2.82812I 5.84740 3.54173I
20
V. I
u
5
= hau + 5b 3a + u 3, a
2
+ au + 5u 4, u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
1
a
3
=
a
1
5
au +
3
5
a
1
5
u +
3
5
a
10
=
u
0
a
2
=
1
5
au +
3
5
a
1
5
u +
3
5
2
5
au +
1
5
a
2
5
u +
6
5
a
1
=
2
5
au
4
5
a
7
5
u +
16
5
1
5
au
2
5
a
6
5
u +
8
5
a
4
=
u + 2
1
5
au +
2
5
a
4
5
u +
2
5
a
8
=
u
u
a
7
=
2
5
au
1
5
a
8
5
u
6
5
1
a
12
=
1
5
au
2
5
a
6
5
u +
8
5
u
a
11
=
1
5
au
2
5
a
11
5
u +
8
5
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
3u + 1)
2
c
2
(u
2
+ u 1)
2
c
3
, c
7
u
4
+ 3u
2
+ 1
c
4
(u
2
u 1)
2
c
5
, c
6
, c
9
c
11
(u
2
+ 1)
2
c
8
, c
10
(u + 1)
4
c
12
u
4
+ 7u
2
+ 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
7y + 1)
2
c
2
, c
4
(y
2
3y + 1)
2
c
3
, c
7
(y
2
+ 3y + 1)
2
c
5
, c
6
, c
9
c
11
(y + 1)
4
c
8
, c
10
(y 1)
4
c
12
(y
2
+ 7y + 1)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 2.23607 + 0.61803I
b = 0.618034 + 0.618034I
5.59278 0
u = 1.000000I
a = 2.23607 1.61803I
b = 1.61803 1.61803I
2.30291 0
u = 1.000000I
a = 2.23607 0.61803I
b = 0.618034 0.618034I
5.59278 0
u = 1.000000I
a = 2.23607 + 1.61803I
b = 1.61803 + 1.61803I
2.30291 0
24
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
2
3u + 1)
2
(u
11
+ 18u
10
+ ··· + 31u + 1)
2
· (u
17
+ 25u
16
+ ··· 31u + 16)
c
2
(u 1)
10
(u
2
+ u 1)
2
· (u
11
4u
10
u
9
+ 17u
8
+ u
7
40u
6
+ 3u
5
+ 37u
4
3u
3
9u
2
+ 7u 1)
2
· (u
17
5u
16
+ ··· u + 4)
c
3
, c
7
u
10
(u
4
+ 3u
2
+ 1)(u
11
+ u
10
+ ··· 4u + 8)
2
· (u
17
3u
16
+ ··· + 176u + 64)
c
4
(u + 1)
10
(u
2
u 1)
2
· (u
11
4u
10
u
9
+ 17u
8
+ u
7
40u
6
+ 3u
5
+ 37u
4
3u
3
9u
2
+ 7u 1)
2
· (u
17
5u
16
+ ··· u + 4)
c
5
, c
6
(u
2
+ 1)
2
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
17
+ 3u
15
+ ··· + 11u
3
1)(u
22
+ 2u
21
+ ··· + 12u + 9)
c
8
, c
10
(u + 1)
4
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
17
6u
16
+ ··· 6u
2
+ 1)(u
22
10u
21
+ ··· 432u + 81)
c
9
, c
11
(u
2
+ 1)
2
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
17
+ 3u
15
+ ··· + 11u
3
1)(u
22
+ 2u
21
+ ··· + 12u + 9)
c
12
(u
3
u
2
+ 1)
2
(u
4
+ 7u
2
+ 1)(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)
· (u
11
+ 12u
9
+ 36u
7
+ 2u
6
+ 2u
5
+ 13u
4
+ 13u
3
+ u
2
+ 1)
2
· (u
17
+ 19u
15
+ ··· 5u
2
+ 4)
25
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
2
7y + 1)
2
(y
11
46y
10
+ ··· + 863y 1)
2
· (y
17
61y
16
+ ··· 15103y 256)
c
2
, c
4
((y 1)
10
)(y
2
3y + 1)
2
(y
11
18y
10
+ ··· + 31y 1)
2
· (y
17
25y
16
+ ··· 31y 16)
c
3
, c
7
y
10
(y
2
+ 3y + 1)
2
(y
11
+ 21y
10
+ ··· + 336y 64)
2
· (y
17
+ 27y
16
+ ··· + 4352y 4096)
c
5
, c
6
, c
9
c
11
(y + 1)
4
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
17
+ 6y
16
+ ··· + 6y
2
1)(y
22
+ 10y
21
+ ··· + 432y + 81)
c
8
, c
10
(y 1)
4
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
17
+ 18y
16
+ ··· + 12y 1)(y
22
+ 2y
21
+ ··· + 12312y + 6561)
c
12
(y
2
+ 7y + 1)
2
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· ((y
11
+ 24y
10
+ ··· 2y 1)
2
)(y
17
+ 38y
16
+ ··· + 40y 16)
26