12n
0212
(K12n
0212
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 11 3 6 12 5 8 10
Solving Sequence
6,11 3,7
8 9 12 5 2 1 4 10
c
6
c
7
c
8
c
11
c
5
c
2
c
1
c
4
c
10
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.43322 × 10
268
u
64
+ 4.87957 × 10
268
u
63
+ ··· + 4.09619 × 10
272
b + 8.91816 × 10
272
,
2.78500 × 10
270
u
64
6.50544 × 10
270
u
63
+ ··· + 7.37313 × 10
273
a 4.93581 × 10
274
,
u
65
2u
64
+ ··· 19008u + 5184i
I
u
2
= hu
6
u
4
+ u
2
+ b u, u
7
+ u
6
u
5
3u
4
+ u
3
+ 3u
2
+ a 3, u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
I
v
1
= ha, 18315v
5
+ 20514v
4
76517v
3
+ 68962v
2
+ 11867b + 4895v + 9310,
9v
6
3v
5
+ 38v
4
6v
3
+ 7v
2
3v + 1i
* 3 irreducible components of dim
C
= 0, with total 79 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.43 × 10
268
u
64
+ 4.88 × 10
268
u
63
+ · · · + 4.10 × 10
272
b + 8.92 ×
10
272
, 2.79 × 10
270
u
64
6.51 × 10
270
u
63
+ · · · + 7.37 × 10
273
a 4.94 ×
10
274
, u
65
2u
64
+ · · · 19008u + 5184i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
0.000377723u
64
+ 0.000882317u
63
+ ··· 24.2190u + 6.69432
0.0000349893u
64
0.000119125u
63
+ ··· + 6.31596u 2.17719
a
7
=
1
u
2
a
8
=
0.000281496u
64
+ 0.000444213u
63
+ ··· 2.66344u 1.87984
0.0000716784u
64
0.0000602668u
63
+ ··· 2.06803u + 1.30681
a
9
=
0.000209817u
64
+ 0.000383947u
63
+ ··· 4.73147u 0.573035
0.0000716784u
64
0.0000602668u
63
+ ··· 2.06803u + 1.30681
a
12
=
0.000110706u
64
0.000268775u
63
+ ··· + 6.05995u 1.93909
0.000214065u
64
0.000335465u
63
+ ··· + 2.94068u + 0.325061
a
5
=
0.0000382070u
64
+ 0.0000348721u
63
+ ··· 4.30269u + 2.47351
0.000100912u
64
0.000304602u
63
+ ··· + 8.12093u 1.65906
a
2
=
0.000284710u
64
+ 0.000546492u
63
+ ··· 12.1877u + 2.72060
0.000172387u
64
0.000396564u
63
+ ··· + 8.99806u 2.35482
a
1
=
0.000100309u
64
0.000149136u
63
+ ··· + 0.894466u 0.119551
0.000143803u
64
+ 0.000150522u
63
+ ··· + 1.65869u 1.49182
a
4
=
0.000313975u
64
+ 0.000618260u
63
+ ··· 13.5334u + 3.85944
0.0000715938u
64
0.000222008u
63
+ ··· + 9.24221u 2.88513
a
10
=
0.000148358u
64
0.000310823u
63
+ ··· + 4.46935u 2.06733
0.000108769u
64
0.000131377u
63
+ ··· + 0.525836u + 0.505205
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00132072u
64
+ 0.00246498u
63
+ ··· 45.0317u + 16.1770
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
65
+ 68u
64
+ ··· + 59u + 1
c
2
, c
4
u
65
10u
64
+ ··· 11u + 1
c
3
, c
7
u
65
2u
64
+ ··· + 640u 256
c
5
, c
8
u
65
+ 3u
64
+ ··· + 3u + 1
c
6
u
65
+ 2u
64
+ ··· 19008u 5184
c
9
, c
12
u
65
+ 8u
64
+ ··· + 1080u + 81
c
10
9(9u
65
+ 18u
64
+ ··· 294572u 29917)
c
11
9(9u
65
+ 42u
64
+ ··· + 608293u + 315227)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
65
132y
64
+ ··· + 7503y 1
c
2
, c
4
y
65
68y
64
+ ··· + 59y 1
c
3
, c
7
y
65
+ 48y
64
+ ··· + 901120y 65536
c
5
, c
8
y
65
+ 37y
64
+ ··· + 11y 1
c
6
y
65
+ 36y
64
+ ··· 462827520y 26873856
c
9
, c
12
y
65
30y
64
+ ··· + 422172y 6561
c
10
81(81y
65
+ 5796y
64
+ ··· + 1.08032 × 10
10
y 8.95027 × 10
8
)
c
11
81(81y
65
558y
64
+ ··· 1.06335 × 10
12
y 9.93681 × 10
10
)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.987989 + 0.000953I
a = 2.12082 + 1.54640I
b = 1.33246 1.66976I
2.66486 2.32248I 5.14580 + 2.29349I
u = 0.987989 0.000953I
a = 2.12082 1.54640I
b = 1.33246 + 1.66976I
2.66486 + 2.32248I 5.14580 2.29349I
u = 0.748540 + 0.696645I
a = 0.226780 + 1.145830I
b = 0.874173 0.089609I
1.04936 + 1.32007I 10.95788 0.41796I
u = 0.748540 0.696645I
a = 0.226780 1.145830I
b = 0.874173 + 0.089609I
1.04936 1.32007I 10.95788 + 0.41796I
u = 0.055143 + 1.022190I
a = 0.05532 1.41633I
b = 0.271016 0.120884I
2.21134 + 0.65096I 2.94304 0.27515I
u = 0.055143 1.022190I
a = 0.05532 + 1.41633I
b = 0.271016 + 0.120884I
2.21134 0.65096I 2.94304 + 0.27515I
u = 0.963379
a = 0.0469319
b = 0.578355
5.22479 24.0830
u = 0.286459 + 1.010510I
a = 0.78431 + 1.39006I
b = 0.316087 + 1.221670I
1.45815 + 1.19485I 9.19775 4.74594I
u = 0.286459 1.010510I
a = 0.78431 1.39006I
b = 0.316087 1.221670I
1.45815 1.19485I 9.19775 + 4.74594I
u = 0.726229 + 0.814196I
a = 0.121481 0.226198I
b = 0.807017 + 0.074160I
2.55567 + 2.51492I 6.00000 3.00902I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.726229 0.814196I
a = 0.121481 + 0.226198I
b = 0.807017 0.074160I
2.55567 2.51492I 6.00000 + 3.00902I
u = 0.891332 + 0.686560I
a = 0.0513899 0.0389433I
b = 0.565696 + 0.133789I
1.17561 6.59366I 15.1731 + 8.7497I
u = 0.891332 0.686560I
a = 0.0513899 + 0.0389433I
b = 0.565696 0.133789I
1.17561 + 6.59366I 15.1731 8.7497I
u = 0.218273 + 1.185850I
a = 0.011907 0.174978I
b = 1.58075 + 0.11150I
3.79735 + 2.57206I 0
u = 0.218273 1.185850I
a = 0.011907 + 0.174978I
b = 1.58075 0.11150I
3.79735 2.57206I 0
u = 0.627540 + 0.484254I
a = 1.321520 + 0.352976I
b = 0.573718 + 0.068027I
1.19155 + 0.95389I 10.21513 0.37317I
u = 0.627540 0.484254I
a = 1.321520 0.352976I
b = 0.573718 0.068027I
1.19155 0.95389I 10.21513 + 0.37317I
u = 0.485202 + 1.151820I
a = 0.294894 + 1.249500I
b = 0.567218 + 0.263601I
0.92912 5.51849I 0
u = 0.485202 1.151820I
a = 0.294894 1.249500I
b = 0.567218 0.263601I
0.92912 + 5.51849I 0
u = 0.001950 + 1.261610I
a = 0.529291 + 1.160890I
b = 1.249780 + 0.587678I
5.91253 + 0.89151I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.001950 1.261610I
a = 0.529291 1.160890I
b = 1.249780 0.587678I
5.91253 0.89151I 0
u = 0.181767 + 1.284800I
a = 0.394438 + 1.295480I
b = 0.520041 + 0.490473I
13.75280 + 0.18156I 0
u = 0.181767 1.284800I
a = 0.394438 1.295480I
b = 0.520041 0.490473I
13.75280 0.18156I 0
u = 0.666243 + 0.215627I
a = 0.63298 + 3.14043I
b = 0.528259 + 0.129647I
9.22847 0.59840I 0.51834 6.09970I
u = 0.666243 0.215627I
a = 0.63298 3.14043I
b = 0.528259 0.129647I
9.22847 + 0.59840I 0.51834 + 6.09970I
u = 0.667926 + 0.125084I
a = 3.07822 0.34270I
b = 1.44314 + 0.42007I
1.45078 0.59119I 2.85675 3.51070I
u = 0.667926 0.125084I
a = 3.07822 + 0.34270I
b = 1.44314 0.42007I
1.45078 + 0.59119I 2.85675 + 3.51070I
u = 0.375714 + 1.275330I
a = 0.01142 1.46097I
b = 1.39649 0.60732I
5.14289 + 4.65238I 0
u = 0.375714 1.275330I
a = 0.01142 + 1.46097I
b = 1.39649 + 0.60732I
5.14289 4.65238I 0
u = 1.370430 + 0.169263I
a = 0.311596 + 0.742406I
b = 1.14616 2.08345I
0.61197 3.88642I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.370430 0.169263I
a = 0.311596 0.742406I
b = 1.14616 + 2.08345I
0.61197 + 3.88642I 0
u = 0.224303 + 0.571448I
a = 1.08323 6.98590I
b = 1.15343 1.78571I
0.766193 0.710691I 8.2875 12.4812I
u = 0.224303 0.571448I
a = 1.08323 + 6.98590I
b = 1.15343 + 1.78571I
0.766193 + 0.710691I 8.2875 + 12.4812I
u = 0.271460 + 0.550386I
a = 0.171011 0.156416I
b = 1.073610 + 0.399773I
1.52187 6.09633I 2.3393 + 14.1949I
u = 0.271460 0.550386I
a = 0.171011 + 0.156416I
b = 1.073610 0.399773I
1.52187 + 6.09633I 2.3393 14.1949I
u = 0.553293 + 1.271240I
a = 0.553265 0.871213I
b = 0.249245 0.493678I
12.27680 + 5.48243I 0
u = 0.553293 1.271240I
a = 0.553265 + 0.871213I
b = 0.249245 + 0.493678I
12.27680 5.48243I 0
u = 0.060757 + 0.566257I
a = 0.169552 + 0.223408I
b = 1.169990 0.272700I
3.05269 0.72062I 0.37252 2.34749I
u = 0.060757 0.566257I
a = 0.169552 0.223408I
b = 1.169990 + 0.272700I
3.05269 + 0.72062I 0.37252 + 2.34749I
u = 0.541890
a = 0.432973
b = 0.203067
0.709590 14.3470
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.22284 + 1.47296I
a = 0.233664 + 0.102031I
b = 1.89702 + 0.23201I
8.45370 + 1.77642I 0
u = 0.22284 1.47296I
a = 0.233664 0.102031I
b = 1.89702 0.23201I
8.45370 1.77642I 0
u = 0.53597 + 1.39821I
a = 0.146182 0.038643I
b = 1.399900 0.050013I
7.04530 8.03742I 0
u = 0.53597 1.39821I
a = 0.146182 + 0.038643I
b = 1.399900 + 0.050013I
7.04530 + 8.03742I 0
u = 0.497138
a = 6.35919
b = 1.12723
0.408756 31.3810
u = 0.72094 + 1.40121I
a = 0.313940 + 1.369360I
b = 1.89330 + 1.11991I
4.34514 + 11.16830I 0
u = 0.72094 1.40121I
a = 0.313940 1.369360I
b = 1.89330 1.11991I
4.34514 11.16830I 0
u = 0.097484 + 0.387248I
a = 0.01203 2.23100I
b = 0.493159 + 0.407995I
1.70444 + 0.86317I 1.80335 2.14625I
u = 0.097484 0.387248I
a = 0.01203 + 2.23100I
b = 0.493159 0.407995I
1.70444 0.86317I 1.80335 + 2.14625I
u = 0.88341 + 1.34912I
a = 0.447992 1.029800I
b = 1.177480 0.641815I
7.46828 10.68780I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.88341 1.34912I
a = 0.447992 + 1.029800I
b = 1.177480 + 0.641815I
7.46828 + 10.68780I 0
u = 0.51591 + 1.53296I
a = 0.030967 1.340990I
b = 2.10343 1.45671I
6.56044 4.64446I 0
u = 0.51591 1.53296I
a = 0.030967 + 1.340990I
b = 2.10343 + 1.45671I
6.56044 + 4.64446I 0
u = 0.82368 + 1.39986I
a = 0.450753 + 0.978865I
b = 1.237730 + 0.645893I
10.53090 + 4.21781I 0
u = 0.82368 1.39986I
a = 0.450753 0.978865I
b = 1.237730 0.645893I
10.53090 4.21781I 0
u = 1.52984 + 0.86914I
a = 0.354905 0.297066I
b = 1.52741 + 0.94608I
5.31966 + 2.30754I 0
u = 1.52984 0.86914I
a = 0.354905 + 0.297066I
b = 1.52741 0.94608I
5.31966 2.30754I 0
u = 0.99000 + 1.57649I
a = 0.478911 1.130600I
b = 2.01241 1.65324I
11.1904 + 16.3453I 0
u = 0.99000 1.57649I
a = 0.478911 + 1.130600I
b = 2.01241 + 1.65324I
11.1904 16.3453I 0
u = 0.65125 + 2.02422I
a = 0.213696 0.852249I
b = 1.51737 2.34323I
4.34300 + 1.86014I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.65125 2.02422I
a = 0.213696 + 0.852249I
b = 1.51737 + 2.34323I
4.34300 1.86014I 0
u = 0.90018 + 2.02783I
a = 0.247259 + 0.974849I
b = 2.21700 + 2.52211I
14.1808 8.5511I 0
u = 0.90018 2.02783I
a = 0.247259 0.974849I
b = 2.21700 2.52211I
14.1808 + 8.5511I 0
u = 2.26622 + 0.12631I
a = 0.013705 0.386355I
b = 0.43221 + 3.40125I
7.12119 6.12750I 0
u = 2.26622 0.12631I
a = 0.013705 + 0.386355I
b = 0.43221 3.40125I
7.12119 + 6.12750I 0
11
II. I
u
2
= hu
6
u
4
+ u
2
+ b u, u
7
+ u
6
u
5
3u
4
+ u
3
+ 3u
2
+ a 3, u
8
+
u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
7
u
6
+ u
5
+ 3u
4
u
3
3u
2
+ 3
u
6
+ u
4
u
2
+ u
a
7
=
1
u
2
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
u
u
3
+ u
a
5
=
u
4
u
2
+ 1
u
4
a
2
=
u
7
u
6
+ u
5
+ 2u
4
u
3
2u
2
+ 2
u
6
u
2
+ u
a
1
=
u
4
+ u
2
1
u
4
a
4
=
u
7
u
6
+ u
5
+ 3u
4
u
3
3u
2
+ 3
u
6
+ u
4
u
2
+ u
a
10
=
u
6
+ u
4
2u
2
+ 1
u
7
u
6
+ 2u
5
+ u
4
2u
3
2u
2
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
+ 4u
6
2u
5
5u
4
+ 3u
3
+ 5u
2
5u 2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
6
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
8
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
9
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
10
, c
12
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
11
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
8
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
6
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
9
, c
10
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 1.21928 + 2.03110I
b = 1.44082 + 1.43962I
0.604279 + 1.131230I 6.13774 5.30650I
u = 0.570868 0.730671I
a = 1.21928 2.03110I
b = 1.44082 1.43962I
0.604279 1.131230I 6.13774 + 5.30650I
u = 0.855237 + 0.665892I
a = 1.230330 + 0.083902I
b = 0.44992 + 1.37717I
3.80435 + 2.57849I 1.88107 3.45077I
u = 0.855237 0.665892I
a = 1.230330 0.083902I
b = 0.44992 1.37717I
3.80435 2.57849I 1.88107 + 3.45077I
u = 1.09818
a = 0.337834
b = 0.407427
4.85780 0.988100
u = 1.031810 + 0.655470I
a = 0.370895 + 0.073482I
b = 0.136119 0.548347I
0.73474 6.44354I 1.17016 + 2.68172I
u = 1.031810 0.655470I
a = 0.370895 0.073482I
b = 0.136119 + 0.548347I
0.73474 + 6.44354I 1.17016 2.68172I
u = 0.603304
a = 2.42604
b = 0.883019
0.799899 1.83890
15
III. I
v
1
= ha, 18315v
5
+ 20514v
4
+ · · · + 11867b + 9310, 9v
6
3v
5
+ 38v
4
6v
3
+ 7v
2
3v + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
v
0
a
3
=
0
1.54336v
5
1.72866v
4
+ ··· 0.412488v 0.784529
a
7
=
1
0
a
8
=
1
3.02073v
5
+ 0.380467v
4
+ ··· 3.21968v 0.339176
a
9
=
3.02073v
5
+ 0.380467v
4
+ ··· 3.21968v + 0.660824
3.02073v
5
+ 0.380467v
4
+ ··· 3.21968v 0.339176
a
12
=
0.626443v
5
+ 0.0634533v
4
+ ··· + 2.34609v 0.335637
0.861549v
5
0.0654757v
4
+ ··· 0.715682v + 0.732788
a
5
=
3.57437v
5
0.956350v
4
+ ··· + 2.47712v 0.821859
6.59510v
5
1.33682v
4
+ ··· + 5.69681v 1.48268
a
2
=
3.02073v
5
0.380467v
4
+ ··· + 3.21968v 0.660824
6.59510v
5
1.33682v
4
+ ··· + 5.69681v 1.48268
a
1
=
3.02073v
5
0.380467v
4
+ ··· + 3.21968v 0.660824
3.02073v
5
0.380467v
4
+ ··· + 3.21968v + 0.339176
a
4
=
1.54336v
5
1.72866v
4
+ ··· 0.412488v 0.784529
1.54336v
5
1.72866v
4
+ ··· 0.412488v 0.784529
a
10
=
2.39429v
5
+ 0.443920v
4
+ ··· 0.873599v + 0.325187
3.88228v
5
+ 0.314991v
4
+ ··· 3.93537v + 0.393613
(ii) Obstruction class = 1
(iii) Cusp Shapes =
224001
11867
v
5
36660
11867
v
4
+
906833
11867
v
3
+
26609
11867
v
2
+
40841
11867
v +
96708
11867
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
2
, c
7
u
6
+ u
5
u
4
2u
3
+ u + 1
c
3
, c
4
u
6
u
5
u
4
+ 2u
3
u + 1
c
5
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
6
u
6
c
9
(u + 1)
6
c
10
9(9u
6
+ 12u
5
+ 2u
4
u
3
+ 4u
2
+ 4u + 1)
c
11
9(9u
6
30u
5
+ 41u
4
30u
3
+ 15u
2
5u + 1)
c
12
(u 1)
6
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
8
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
2
, c
3
, c
4
c
7
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
6
y
6
c
9
, c
12
(y 1)
6
c
10
81(81y
6
108y
5
+ 100y
4
63y
3
+ 28y
2
8y + 1)
c
11
81(81y
6
162y
5
+ 151y
4
+ 48y
3
+ 7y
2
+ 5y + 1)
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.178337 + 0.463585I
a = 0
b = 1.002190 + 0.295542I
3.53554 + 0.92430I 14.9081 3.3454I
v = 0.178337 0.463585I
a = 0
b = 1.002190 0.295542I
3.53554 0.92430I 14.9081 + 3.3454I
v = 0.246749 + 0.226622I
a = 0
b = 1.073950 0.558752I
1.64493 + 5.69302I 7.23419 + 3.25470I
v = 0.246749 0.226622I
a = 0
b = 1.073950 + 0.558752I
1.64493 5.69302I 7.23419 3.25470I
v = 0.09825 + 2.00069I
a = 0
b = 0.428243 0.664531I
0.245672 0.924305I 8.52440 + 0.42550I
v = 0.09825 2.00069I
a = 0
b = 0.428243 + 0.664531I
0.245672 + 0.924305I 8.52440 0.42550I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
8
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
65
+ 68u
64
+ ··· + 59u + 1)
c
2
((u 1)
8
)(u
6
+ u
5
+ ··· + u + 1)(u
65
10u
64
+ ··· 11u + 1)
c
3
u
8
(u
6
u
5
+ ··· u + 1)(u
65
2u
64
+ ··· + 640u 256)
c
4
((u + 1)
8
)(u
6
u
5
+ ··· u + 1)(u
65
10u
64
+ ··· 11u + 1)
c
5
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
65
+ 3u
64
+ ··· + 3u + 1)
c
6
u
6
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
65
+ 2u
64
+ ··· 19008u 5184)
c
7
u
8
(u
6
+ u
5
+ ··· + u + 1)(u
65
2u
64
+ ··· + 640u 256)
c
8
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
65
+ 3u
64
+ ··· + 3u + 1)
c
9
(u + 1)
6
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
65
+ 8u
64
+ ··· + 1080u + 81)
c
10
81(9u
6
+ 12u
5
+ 2u
4
u
3
+ 4u
2
+ 4u + 1)
· (u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (9u
65
+ 18u
64
+ ··· 294572u 29917)
c
11
81(9u
6
30u
5
+ 41u
4
30u
3
+ 15u
2
5u + 1)
· (u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (9u
65
+ 42u
64
+ ··· + 608293u + 315227)
c
12
(u 1)
6
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
65
+ 8u
64
+ ··· + 1080u + 81)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
6
+ y
5
+ ··· + 3y + 1)(y
65
132y
64
+ ··· + 7503y 1)
c
2
, c
4
(y 1)
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
65
68y
64
+ ··· + 59y 1)
c
3
, c
7
y
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
65
+ 48y
64
+ ··· + 901120y 65536)
c
5
, c
8
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
65
+ 37y
64
+ ··· + 11y 1)
c
6
y
6
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
65
+ 36y
64
+ ··· 462827520y 26873856)
c
9
, c
12
(y 1)
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
65
30y
64
+ ··· + 422172y 6561)
c
10
6561(81y
6
108y
5
+ 100y
4
63y
3
+ 28y
2
8y + 1)
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (81y
65
+ 5796y
64
+ ··· + 10803168570y 895026889)
c
11
6561(81y
6
162y
5
+ 151y
4
+ 48y
3
+ 7y
2
+ 5y + 1)
· (y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (81y
65
558y
64
+ ··· 1063347056943y 99368061529)
21