12n
0213
(K12n
0213
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 11 9 3 12 6 1 7 10
Solving Sequence
3,7 8,12
9 6 11 5 2 1 4 10
c
7
c
8
c
6
c
11
c
5
c
2
c
1
c
4
c
10
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.59949 × 10
269
u
80
+ 6.86481 × 10
269
u
79
+ ··· + 5.51786 × 10
269
b + 2.33003 × 10
272
,
2.46814 × 10
269
u
80
+ 3.35212 × 10
269
u
79
+ ··· + 1.10357 × 10
270
a + 1.23485 × 10
272
,
u
81
2u
80
+ ··· + 128u + 256i
I
u
2
= hb, 9u
4
+ 4u
3
3u
2
+ 17a + 18u 1, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
I
v
1
= ha, 941v
7
2551v
6
1791v
5
+ 6184v
4
+ 16309v
3
15249v
2
+ 887b 4192v + 1842,
v
8
+ 2v
7
8v
5
13v
4
+ 28v
3
7v
2
3v + 1i
* 3 irreducible components of dim
C
= 0, with total 94 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.60 × 10
269
u
80
+ 6.86 × 10
269
u
79
+ · · · + 5.52 × 10
269
b + 2.33 ×
10
272
, 2.47 × 10
269
u
80
+ 3.35 × 10
269
u
79
+ · · · + 1.10 × 10
270
a + 1.23 ×
10
272
, u
81
2u
80
+ · · · + 128u + 256i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
12
=
0.223650u
80
0.303752u
79
+ ··· 220.646u 111.896
0.833564u
80
1.24411u
79
+ ··· 1041.50u 422.270
a
9
=
0.0640486u
80
0.0983033u
79
+ ··· 107.977u 39.3161
0.588758u
80
+ 0.829945u
79
+ ··· + 564.671u + 265.326
a
6
=
0.0674337u
80
+ 0.135096u
79
+ ··· + 187.141u + 50.7879
0.563979u
80
0.802383u
79
+ ··· 556.962u 256.795
a
11
=
1.05721u
80
1.54786u
79
+ ··· 1262.14u 534.166
0.833564u
80
1.24411u
79
+ ··· 1041.50u 422.270
a
5
=
0.314943u
80
0.447399u
79
+ ··· 386.680u 179.586
0.697460u
80
1.02573u
79
+ ··· 848.797u 360.306
a
2
=
0.382518u
80
0.578331u
79
+ ··· 462.117u 180.720
0.697460u
80
1.02573u
79
+ ··· 848.797u 360.306
a
1
=
0.382518u
80
0.578331u
79
+ ··· 462.117u 180.720
0.598651u
80
0.876596u
79
+ ··· 726.974u 312.510
a
4
=
u
u
a
10
=
0.412932u
80
0.594022u
79
+ ··· 454.675u 197.166
0.598651u
80
+ 0.876596u
79
+ ··· + 726.974u + 312.510
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.57477u
80
+ 2.25832u
79
+ ··· + 1490.53u + 646.531
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
81
+ 36u
80
+ ··· + 29u + 1
c
2
, c
4
u
81
10u
80
+ ··· 13u + 1
c
3
, c
7
u
81
2u
80
+ ··· + 128u + 256
c
5
17(17u
81
14u
80
+ ··· 259698u + 23437)
c
6
, c
9
u
81
3u
80
+ ··· + 3u 1
c
8
17(17u
81
148u
80
+ ··· 626508u 174339)
c
10
, c
12
u
81
7u
80
+ ··· + 339u 289
c
11
u
81
2u
80
+ ··· 32096u + 9248
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
81
+ 28y
80
+ ··· + 6913y 1
c
2
, c
4
y
81
36y
80
+ ··· + 29y 1
c
3
, c
7
y
81
48y
80
+ ··· + 2080768y 65536
c
5
289(289y
81
+ 19082y
80
+ ··· 6.59115 × 10
9
y 5.49293 × 10
8
)
c
6
, c
9
y
81
+ 45y
80
+ ··· + 5y 1
c
8
289(289y
81
4428y
80
+ ··· 1.69694 × 10
11
y 3.03941 × 10
10
)
c
10
, c
12
y
81
43y
80
+ ··· + 4014687y 83521
c
11
y
81
+ 30y
80
+ ··· 1164952064y 85525504
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.917288 + 0.136182I
a = 1.80406 1.65669I
b = 0.466096 + 1.065420I
1.75099 2.26560I 0
u = 0.917288 0.136182I
a = 1.80406 + 1.65669I
b = 0.466096 1.065420I
1.75099 + 2.26560I 0
u = 0.120668 + 1.075100I
a = 0.110583 0.334996I
b = 0.63907 1.32827I
3.50365 4.45577I 0
u = 0.120668 1.075100I
a = 0.110583 + 0.334996I
b = 0.63907 + 1.32827I
3.50365 + 4.45577I 0
u = 1.065120 + 0.201662I
a = 0.13685 1.63080I
b = 0.90356 + 1.59497I
0.801342 0.587804I 0
u = 1.065120 0.201662I
a = 0.13685 + 1.63080I
b = 0.90356 1.59497I
0.801342 + 0.587804I 0
u = 1.102270 + 0.086046I
a = 0.731098 + 0.138738I
b = 1.77507 + 0.10621I
2.29933 + 2.90155I 0
u = 1.102270 0.086046I
a = 0.731098 0.138738I
b = 1.77507 0.10621I
2.29933 2.90155I 0
u = 0.377849 + 1.055930I
a = 0.042987 + 0.341087I
b = 0.154093 + 1.058040I
2.93287 0.15502I 0
u = 0.377849 1.055930I
a = 0.042987 0.341087I
b = 0.154093 1.058040I
2.93287 + 0.15502I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.124380 + 0.061386I
a = 0.045693 0.667032I
b = 1.263870 + 0.473188I
0.245536 0.603566I 0
u = 1.124380 0.061386I
a = 0.045693 + 0.667032I
b = 1.263870 0.473188I
0.245536 + 0.603566I 0
u = 1.109070 + 0.299410I
a = 0.44786 1.55704I
b = 0.27630 + 1.76877I
1.06769 + 4.07791I 0
u = 1.109070 0.299410I
a = 0.44786 + 1.55704I
b = 0.27630 1.76877I
1.06769 4.07791I 0
u = 0.304908 + 0.772829I
a = 1.70493 1.90308I
b = 1.263410 + 0.370125I
1.76648 + 3.44608I 11.81203 6.71131I
u = 0.304908 0.772829I
a = 1.70493 + 1.90308I
b = 1.263410 0.370125I
1.76648 3.44608I 11.81203 + 6.71131I
u = 0.037140 + 0.801194I
a = 0.424195 + 0.072722I
b = 0.321351 0.451413I
0.644523 + 1.154210I 7.22358 5.30161I
u = 0.037140 0.801194I
a = 0.424195 0.072722I
b = 0.321351 + 0.451413I
0.644523 1.154210I 7.22358 + 5.30161I
u = 1.181860 + 0.365384I
a = 0.322573 0.695076I
b = 1.16061 + 1.01997I
0.44702 + 4.44359I 0
u = 1.181860 0.365384I
a = 0.322573 + 0.695076I
b = 1.16061 1.01997I
0.44702 4.44359I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.305807 + 1.214000I
a = 0.138866 + 0.073449I
b = 0.076313 0.714540I
1.00073 + 1.10337I 0
u = 0.305807 1.214000I
a = 0.138866 0.073449I
b = 0.076313 + 0.714540I
1.00073 1.10337I 0
u = 1.259720 + 0.183479I
a = 0.42270 1.68355I
b = 0.647775 + 1.125350I
0.57249 + 7.40525I 0
u = 1.259720 0.183479I
a = 0.42270 + 1.68355I
b = 0.647775 1.125350I
0.57249 7.40525I 0
u = 1.271440 + 0.091622I
a = 1.26707 + 0.81502I
b = 0.635645 + 0.052930I
3.70065 + 2.46096I 0
u = 1.271440 0.091622I
a = 1.26707 0.81502I
b = 0.635645 0.052930I
3.70065 2.46096I 0
u = 1.207870 + 0.444621I
a = 0.756760 + 0.229343I
b = 2.00837 + 0.41189I
1.14509 8.06770I 0
u = 1.207870 0.444621I
a = 0.756760 0.229343I
b = 2.00837 0.41189I
1.14509 + 8.06770I 0
u = 0.031998 + 0.705333I
a = 2.25763 + 3.03351I
b = 0.595287 0.236308I
0.856013 0.572838I 9.77883 6.76958I
u = 0.031998 0.705333I
a = 2.25763 3.03351I
b = 0.595287 + 0.236308I
0.856013 + 0.572838I 9.77883 + 6.76958I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.254380 + 0.379088I
a = 0.073419 0.993964I
b = 0.322122 + 0.778979I
3.62852 1.44404I 0
u = 1.254380 0.379088I
a = 0.073419 + 0.993964I
b = 0.322122 0.778979I
3.62852 + 1.44404I 0
u = 1.290060 + 0.297853I
a = 2.40362 + 0.15222I
b = 0.496430 + 0.171022I
3.27537 3.11183I 0
u = 1.290060 0.297853I
a = 2.40362 0.15222I
b = 0.496430 0.171022I
3.27537 + 3.11183I 0
u = 0.430170 + 1.261980I
a = 0.0208238 0.0730675I
b = 0.075154 + 0.342675I
7.39266 4.46618I 0
u = 0.430170 1.261980I
a = 0.0208238 + 0.0730675I
b = 0.075154 0.342675I
7.39266 + 4.46618I 0
u = 0.003874 + 1.341760I
a = 0.051217 + 0.133529I
b = 0.462332 1.087250I
1.57086 + 4.63500I 0
u = 0.003874 1.341760I
a = 0.051217 0.133529I
b = 0.462332 + 1.087250I
1.57086 4.63500I 0
u = 0.359544 + 1.313050I
a = 0.0563961 0.1200560I
b = 0.74899 + 1.24410I
0.87722 10.39950I 0
u = 0.359544 1.313050I
a = 0.0563961 + 0.1200560I
b = 0.74899 1.24410I
0.87722 + 10.39950I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.384620 + 0.499680I
a = 3.36808 2.21393I
b = 0.093782 + 0.930633I
3.35669 0.78678I 13.41061 2.25803I
u = 0.384620 0.499680I
a = 3.36808 + 2.21393I
b = 0.093782 0.930633I
3.35669 + 0.78678I 13.41061 + 2.25803I
u = 0.264306 + 0.568630I
a = 3.33735 2.02034I
b = 0.391309 + 0.555476I
3.28994 0.66311I 15.7713 6.3444I
u = 0.264306 0.568630I
a = 3.33735 + 2.02034I
b = 0.391309 0.555476I
3.28994 + 0.66311I 15.7713 + 6.3444I
u = 0.470622 + 1.297750I
a = 0.1152940 0.0121795I
b = 0.480849 + 0.922837I
2.44609 + 4.54883I 0
u = 0.470622 1.297750I
a = 0.1152940 + 0.0121795I
b = 0.480849 0.922837I
2.44609 4.54883I 0
u = 0.563976 + 0.252821I
a = 3.87049 0.67399I
b = 0.924450 + 0.521315I
2.51389 1.66198I 7.48365 + 7.67369I
u = 0.563976 0.252821I
a = 3.87049 + 0.67399I
b = 0.924450 0.521315I
2.51389 + 1.66198I 7.48365 7.67369I
u = 1.314700 + 0.516481I
a = 0.700496 + 0.794611I
b = 0.170363 1.259370I
7.93642 0.74689I 0
u = 1.314700 0.516481I
a = 0.700496 0.794611I
b = 0.170363 + 1.259370I
7.93642 + 0.74689I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41962 + 0.28061I
a = 0.08835 1.53474I
b = 0.68305 + 1.74784I
9.06005 4.28051I 0
u = 1.41962 0.28061I
a = 0.08835 + 1.53474I
b = 0.68305 1.74784I
9.06005 + 4.28051I 0
u = 0.536208 + 0.020154I
a = 0.381909 + 0.660403I
b = 0.990257 + 0.466409I
1.74024 + 2.57808I 1.64614 3.99127I
u = 0.536208 0.020154I
a = 0.381909 0.660403I
b = 0.990257 0.466409I
1.74024 2.57808I 1.64614 + 3.99127I
u = 1.26179 + 0.74689I
a = 0.568701 0.625869I
b = 0.446841 + 1.027050I
5.50142 + 6.66477I 0
u = 1.26179 0.74689I
a = 0.568701 + 0.625869I
b = 0.446841 1.027050I
5.50142 6.66477I 0
u = 1.45648 + 0.17045I
a = 0.014130 1.109200I
b = 0.486362 + 1.176390I
5.13729 + 0.14448I 0
u = 1.45648 0.17045I
a = 0.014130 + 1.109200I
b = 0.486362 1.176390I
5.13729 0.14448I 0
u = 1.38541 + 0.48962I
a = 0.222539 + 1.164460I
b = 0.863918 1.085180I
3.90532 6.32227I 0
u = 1.38541 0.48962I
a = 0.222539 1.164460I
b = 0.863918 + 1.085180I
3.90532 + 6.32227I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.36979 + 0.56225I
a = 0.32140 + 1.55951I
b = 1.00900 1.78065I
7.48247 + 10.42400I 0
u = 1.36979 0.56225I
a = 0.32140 1.55951I
b = 1.00900 + 1.78065I
7.48247 10.42400I 0
u = 0.510766 + 0.040571I
a = 0.0448621 0.1105510I
b = 1.130170 + 0.637260I
3.66273 6.35091I 0.98592 + 2.27880I
u = 0.510766 0.040571I
a = 0.0448621 + 0.1105510I
b = 1.130170 0.637260I
3.66273 + 6.35091I 0.98592 2.27880I
u = 0.488226
a = 0.0864842
b = 1.20413
7.82560 1.06680
u = 0.460537
a = 2.90679
b = 0.378026
2.10956 0.570870
u = 1.43085 + 0.59706I
a = 0.225520 + 1.054550I
b = 0.617156 1.185330I
2.95577 + 5.59636I 0
u = 1.43085 0.59706I
a = 0.225520 1.054550I
b = 0.617156 + 1.185330I
2.95577 5.59636I 0
u = 1.34748 + 0.77249I
a = 0.341891 1.108690I
b = 0.88792 + 1.14316I
0.44420 11.92600I 0
u = 1.34748 0.77249I
a = 0.341891 + 1.108690I
b = 0.88792 1.14316I
0.44420 + 11.92600I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.37337 + 0.74737I
a = 0.47636 1.44039I
b = 1.00899 + 1.43140I
4.1305 + 17.6948I 0
u = 1.37337 0.74737I
a = 0.47636 + 1.44039I
b = 1.00899 1.43140I
4.1305 17.6948I 0
u = 1.47814 + 0.54713I
a = 0.19095 + 1.42666I
b = 0.82247 1.43998I
6.48435 11.27690I 0
u = 1.47814 0.54713I
a = 0.19095 1.42666I
b = 0.82247 + 1.43998I
6.48435 + 11.27690I 0
u = 1.52599 + 0.50100I
a = 0.477540 + 0.885654I
b = 0.108340 1.030180I
6.76050 + 2.10600I 0
u = 1.52599 0.50100I
a = 0.477540 0.885654I
b = 0.108340 + 1.030180I
6.76050 2.10600I 0
u = 1.60879 + 0.22946I
a = 0.417558 1.009620I
b = 0.125923 + 1.213300I
8.03820 + 4.62100I 0
u = 1.60879 0.22946I
a = 0.417558 + 1.009620I
b = 0.125923 1.213300I
8.03820 4.62100I 0
u = 0.218066 + 0.304864I
a = 0.49252 + 3.66787I
b = 0.425595 0.658071I
0.977641 0.985323I 3.19724 0.04207I
u = 0.218066 0.304864I
a = 0.49252 3.66787I
b = 0.425595 + 0.658071I
0.977641 + 0.985323I 3.19724 + 0.04207I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.341255
a = 1.06309
b = 0.618121
0.986770 9.94130
13
II. I
u
2
= hb, 9u
4
+ 4u
3
3u
2
+ 17a + 18u 1, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
12
=
0.529412u
4
0.235294u
3
+ ··· 1.05882u + 0.0588235
0
a
9
=
0.131488u
4
0.463668u
3
+ ··· 0.910035u + 1.14533
u
2
a
6
=
0.0622837u
4
+ 0.148789u
3
+ ··· + 0.463668u + 1.59516
u
4
a
11
=
0.529412u
4
0.235294u
3
+ ··· 1.05882u + 0.0588235
0
a
5
=
u
2
+ 1
u
4
a
2
=
u
4
u
2
1
u
4
a
1
=
u
4
u
2
1
u
4
+ u
3
+ u
2
+ 1
a
4
=
u
u
a
10
=
1.52941u
4
0.235294u
3
+ ··· 1.05882u + 1.05882
u
4
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1429
289
u
4
3783
289
u
3
1128
289
u
2
3092
289
u
5595
289
14
(iv) u-Polynomials at the component
15
Crossings u-Polynomials at each crossing
c
1
u
5
5u
4
+ 8u
3
3u
2
u 1
c
2
u
5
+ u
4
2u
3
u
2
+ u 1
c
3
u
5
u
4
+ 2u
3
u
2
+ u 1
c
4
u
5
u
4
2u
3
+ u
2
+ u + 1
c
5
17(17u
5
+ 32u
4
+ 18u
3
u
2
4u 1)
c
6
u
5
3u
4
+ 4u
3
u
2
u + 1
c
7
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
8
17(17u
5
42u
4
+ 43u
3
22u
2
+ 6u 1)
c
9
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
10
(u 1)
5
c
11
u
5
c
12
(u + 1)
5
16
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
2
, c
4
y
5
5y
4
+ 8y
3
3y
2
y 1
c
3
, c
7
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
5
289(289y
5
412y
4
+ 252y
3
81y
2
+ 14y 1)
c
6
, c
9
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
8
289(289y
5
302y
4
+ 205y
3
52y
2
8y 1)
c
10
, c
12
(y 1)
5
c
11
y
5
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.244471 1.039700I
b = 0
1.97403 + 1.53058I 12.32109 4.31295I
u = 0.339110 0.822375I
a = 0.244471 + 1.039700I
b = 0
1.97403 1.53058I 12.32109 + 4.31295I
u = 0.766826
a = 1.26368
b = 0
4.04602 9.25800
u = 0.455697 + 1.200150I
a = 0.053809 + 0.194708I
b = 0
7.51750 4.40083I 35.8077 9.0642I
u = 0.455697 1.200150I
a = 0.053809 0.194708I
b = 0
7.51750 + 4.40083I 35.8077 + 9.0642I
19
III. I
v
1
= ha, 941v
7
2551v
6
+ · · · + 887b + 1842, v
8
+ 2v
7
8v
5
13v
4
+
28v
3
7v
2
3v + 1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
12
=
0
1.06088v
7
+ 2.87599v
6
+ ··· + 4.72604v 2.07666
a
9
=
1
1.62683v
7
+ 3.57497v
6
+ ··· + 1.17926v 3.82638
a
6
=
1.62683v
7
3.57497v
6
+ ··· 1.17926v + 4.82638
2.38219v
7
5.33258v
6
+ ··· + 1.21984v + 6.70349
a
11
=
1.06088v
7
+ 2.87599v
6
+ ··· + 4.72604v 2.07666
1.06088v
7
+ 2.87599v
6
+ ··· + 4.72604v 2.07666
a
5
=
0.244645v
7
0.242390v
6
+ ··· + 4.60090v + 1.12289
v
7
2v
6
+ 8v
4
+ 13v
3
28v
2
+ 7v + 3
a
2
=
0.244645v
7
+ 0.242390v
6
+ ··· 3.60090v 1.12289
v
7
+ 2v
6
8v
4
13v
3
+ 28v
2
7v 3
a
1
=
0.244645v
7
+ 0.242390v
6
+ ··· 4.60090v 1.12289
v
7
+ 2v
6
8v
4
13v
3
+ 28v
2
7v 3
a
4
=
v
0
a
10
=
0.755355v
7
+ 1.75761v
6
+ ··· 2.39910v 1.87711
v
7
+ 2v
6
8v
4
13v
3
+ 28v
2
7v 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
7569
887
v
7
+
17105
887
v
6
+
3122
887
v
5
63760
887
v
4
119185
887
v
3
+
185558
887
v
2
+
17829
887
v
42646
887
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
, c
10
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
6
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
8
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
9
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
11
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
12
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
10
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
6
, c
9
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
8
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.230330 + 0.083902I
a = 0
b = 0.855237 + 0.665892I
0.51448 + 2.57849I 10.43522 3.68514I
v = 1.230330 0.083902I
a = 0
b = 0.855237 0.665892I
0.51448 2.57849I 10.43522 + 3.68514I
v = 0.370895 + 0.073482I
a = 0
b = 1.031810 + 0.655470I
4.02461 6.44354I 20.0271 + 7.9066I
v = 0.370895 0.073482I
a = 0
b = 1.031810 0.655470I
4.02461 + 6.44354I 20.0271 7.9066I
v = 0.337834
a = 0
b = 1.09818
8.14766 26.7400
v = 1.21928 + 2.03110I
a = 0
b = 0.570868 + 0.730671I
2.68559 + 1.13123I 8.69271 + 4.28492I
v = 1.21928 2.03110I
a = 0
b = 0.570868 0.730671I
2.68559 1.13123I 8.69271 4.28492I
v = 2.42604
a = 0
b = 0.603304
2.48997 21.9500
23
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
5
5u
4
+ ··· u 1)(u
81
+ 36u
80
+ ··· + 29u + 1)
c
2
((u 1)
8
)(u
5
+ u
4
+ ··· + u 1)(u
81
10u
80
+ ··· 13u + 1)
c
3
u
8
(u
5
u
4
+ ··· + u 1)(u
81
2u
80
+ ··· + 128u + 256)
c
4
((u + 1)
8
)(u
5
u
4
+ ··· + u + 1)(u
81
10u
80
+ ··· 13u + 1)
c
5
289(17u
5
+ 32u
4
+ 18u
3
u
2
4u 1)
· (u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (17u
81
14u
80
+ ··· 259698u + 23437)
c
6
(u
5
3u
4
+ 4u
3
u
2
u + 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
81
3u
80
+ ··· + 3u 1)
c
7
u
8
(u
5
+ u
4
+ ··· + u + 1)(u
81
2u
80
+ ··· + 128u + 256)
c
8
289(17u
5
42u
4
+ 43u
3
22u
2
+ 6u 1)
· (u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (17u
81
148u
80
+ ··· 626508u 174339)
c
9
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
81
3u
80
+ ··· + 3u 1)
c
10
(u 1)
5
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
81
7u
80
+ ··· + 339u 289)
c
11
u
5
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
81
2u
80
+ ··· 32096u + 9248)
c
12
(u + 1)
5
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
81
7u
80
+ ··· + 339u 289)
24
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
· (y
81
+ 28y
80
+ ··· + 6913y 1)
c
2
, c
4
((y 1)
8
)(y
5
5y
4
+ ··· y 1)(y
81
36y
80
+ ··· + 29y 1)
c
3
, c
7
y
8
(y
5
+ 3y
4
+ ··· y 1)(y
81
48y
80
+ ··· + 2080768y 65536)
c
5
83521(289y
5
412y
4
+ 252y
3
81y
2
+ 14y 1)
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (289y
81
+ 19082y
80
+ ··· 6591150616y 549292969)
c
6
, c
9
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
81
+ 45y
80
+ ··· + 5y 1)
c
8
83521(289y
5
302y
4
+ 205y
3
52y
2
8y 1)
· (y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (289y
81
4428y
80
+ ··· 169694389746y 30394086921)
c
10
, c
12
(y 1)
5
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
81
43y
80
+ ··· + 4014687y 83521)
c
11
y
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
81
+ 30y
80
+ ··· 1164952064y 85525504)
25