12n
0220
(K12n
0220
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 12 9 3 6 8 5 6 11
Solving Sequence
5,12 3,6
2 1
4,8
7 11 10 9
c
5
c
2
c
1
c
4
c
7
c
11
c
10
c
9
c
3
, c
6
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h2281u
12
+ 1307u
11
+ ··· + 44956d + 11490, 1947u
12
+ 1293u
11
+ ··· + 22478c + 16277,
573u
12
+ 2043u
11
+ ··· + 44956b + 16722, −1947u
12
− 1293u
11
+ ··· + 22478a − 16277,
u
13
+ u
12
+ 2u
11
+ u
10
+ 5u
9
+ u
8
+ 4u
7
+ u
6
+ 15u
5
+ 5u
4
+ 16u
3
+ 5u
2
+ 12u + 4i
I
u
2
= h−u
4
+ u
2
a − 2u
3
+ au − u
2
+ d + 2u + 2, u
4
+ 3u
3
+ 5u
2
+ c − a + 3u + 1, u
4
+ 2u
3
− au + 2u
2
+ b,
− u
4
a − 3u
3
a + 2u
4
− 5u
2
a + 4u
3
+ a
2
− 3au + 3u
2
− a − 2u − 1, u
5
+ 2u
4
+ 2u
3
+ u + 1i
I
u
3
= hd, c + u, b, a − 1, u
2
− u + 1i
I
u
4
= hd − u − 1, c − 1, b + 1, a − u, u
2
+ u + 1i
I
u
5
= h−cu + d − c + 1, ca − cu + au, b + 1, u
2
+ u + 1i
I
v
1
= ha, d − 1, c + a, b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 28 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1