12n
0221
(K12n
0221
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 11 12 10 3 11 8 1 6
Solving Sequence
2,5 3,11
6 1
4,9
8 10 12 7
c
2
c
5
c
1
c
4
c
8
c
10
c
12
c
6
c
3
, c
7
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2258808925u
16
+ 15860359921u
15
+ ··· + 96479313856d − 115431185160,
154139657205u
16
+ 1193150529938u
15
+ ··· + 2508462160256c − 2116899433348,
4410667u
16
+ 32637095u
15
+ ··· + 83243584b − 126220048,
7888753u
16
+ 58699357u
15
+ ··· + 83243584a − 107418368, u
17
+ 8u
16
+ ··· − 8u − 16i
I
u
2
= hd − a, c − a, b − a, a
2
− a + 1, u − 1i
I
u
3
= hd + 1, c, b − 1, a − 1, u − 1i
I
u
4
= hda − ca + 1, c
2
− c + 1, b − a, u − 1i
I
v
1
= hc, d − a − 1, b, a
2
+ a + 1, v − 1i
* 4 irreducible components of dim
C
= 0, with total 22 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1