12n
0222
(K12n
0222
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 11 12 10 3 7 9 1 6
Solving Sequence
3,9 4,5,11
6 2 1 8 10 7 12
c
3
c
5
c
2
c
1
c
8
c
10
c
7
c
12
c
4
, c
6
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.12031 × 10
34
u
30
− 2.31311 × 10
35
u
29
+ ··· + 1.08242 × 10
37
d − 4.05250 × 10
35
,
− 3.25140 × 10
35
u
30
− 1.04293 × 10
36
u
29
+ ··· + 2.16483 × 10
37
c − 2.49953 × 10
37
,
− 6.96435 × 10
33
u
30
+ 1.25405 × 10
34
u
29
+ ··· + 1.08242 × 10
37
b − 4.63583 × 10
36
,
9.28423 × 10
34
u
30
+ 2.43126 × 10
35
u
29
+ ··· + 2.16483 × 10
37
a − 1.72516 × 10
37
, u
31
+ 3u
30
+ ··· + 64u + 32i
I
u
2
= h114533971308u
22
a − 295693377683u
22
+ ··· + 309089289992a − 1727678279402,
− 106328835549u
22
a − 37415285413u
22
+ ··· − 881316945982a − 268636021714,
− 38636161249u
22
a + 6684998365u
22
+ ··· + 212657671098a − 31359529106,
709294494705u
22
a − 467986206381u
22
+ ··· + 1120177291630a + 112735730394,
u
23
− u
22
+ ··· + 8u + 4i
I
v
1
= ha, d, c − v, b − 1, v
2
− v + 1i
I
v
2
= hc, d + v − 1, b, a − 1, v
2
− v + 1i
I
v
3
= ha, d + 1, c + a, b − 1, v + 1i
I
v
4
= ha, a
2
d + c
2
v − 2ca − cv + a + v, dv − 1, c
2
v
2
− 2cav − v
2
c + a
2
+ av + v
2
, b − 1i
* 5 irreducible components of dim
C
= 0, with total 82 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1