12n
0225
(K12n
0225
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 11 9 3 10 7 12 5 10
Solving Sequence
3,7
4
5,8
2
1,10
9 12 11 6
c
3
c
7
c
2
c
1
c
9
c
12
c
11
c
5
c
4
, c
6
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−108733460839492u
15
+ 235633173020139u
14
+ ··· + 44568754122034192d − 655346094957840,
− 5.82443 × 10
14
u
15
+ 2.17023 × 10
15
u
14
+ ··· + 8.91375 × 10
16
c + 4.50759 × 10
16
,
− 2.11450 × 10
14
u
15
+ 6.65971 × 10
14
u
14
+ ··· + 4.45688 × 10
16
b − 9.31909 × 10
15
,
40959130934865u
15
− 340344314483579u
14
+ ··· + 89137508244068384a − 71636506057825568,
u
16
− 3u
15
+ ··· − 64u + 32i
I
u
2
= h−2059u
7
− 2277u
6
+ ··· + 6184d + 18886, 1033u
7
a − 1546u
7
+ ··· − 5850a + 12368,
− 109u
7
a + 121u
7
+ ··· + 2066a − 3882, 9443u
7
a − 4639u
7
+ ··· − 14966a + 1182,
u
8
+ u
7
− 7u
6
− 4u
5
+ 16u
4
− 3u
3
− 9u
2
− 8u − 4i
I
v
1
= ha, d, c − v, b − 1, v
2
− v + 1i
I
v
2
= hc, d + v − 1, b, a − 1, v
2
− v + 1i
I
v
3
= ha, d + 1, c + a, b − 1, v + 1i
I
v
4
= ha, a
2
d + c
2
v − 2ca − cv + a + v, dv − 1, c
2
v
2
− 2cav − v
2
c + a
2
+ av + v
2
, b − 1i
* 5 irreducible components of dim
C
= 0, with total 37 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1