12n
0234
(K12n
0234
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 11 12 3 1 6 7 8
Solving Sequence
7,11
12
3,8
4 1 6 10 5 2 9
c
11
c
7
c
3
c
12
c
6
c
10
c
5
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
23
+ 16u
21
+ ··· + b 1, u
22
+ 15u
20
+ ··· + a + 1, u
24
2u
23
+ ··· + u 1i
I
u
2
= hu
2
+ b 1, a + 1, u
3
+ u
2
2u 1i
* 2 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
23
+16u
21
+· · ·+b1, u
22
+15u
20
+· · ·+a+1, u
24
2u
23
+· · ·+u1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
u
22
15u
20
+ ··· 6u 1
u
23
16u
21
+ ··· + u + 1
a
8
=
u
u
3
+ u
a
4
=
2u
23
+ 2u
22
+ ··· 6u 2
3u
23
+ u
22
+ ··· + 2u 1
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
u
a
10
=
u
2
+ 1
u
2
a
5
=
u
3
+ 2u
u
3
+ u
a
2
=
u
23
+ u
22
+ ··· 5u 1
u
23
+ 15u
21
+ ··· + 8u
2
+ 2u
a
9
=
u
8
5u
6
+ 7u
4
4u
2
+ 1
u
10
6u
8
+ 11u
6
6u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
23
4u
22
16u
21
+ 62u
20
+ 110u
19
405u
18
420u
17
+
1453u
16
+ 940u
15
3134u
14
1118u
13
+ 4197u
12
+ 260u
11
3495u
10
+ 1034u
9
+
1741u
8
1269u
7
400u
6
+ 550u
5
66u
4
92u
3
+ 43u
2
+ 22u 5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 8u
23
+ ··· + 34u + 1
c
2
, c
4
u
24
4u
23
+ ··· + 6u 1
c
3
, c
8
u
24
+ u
23
+ ··· + 36u + 8
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
24
2u
23
+ ··· + u 1
c
9
u
24
+ 2u
23
+ ··· + 7u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 20y
23
+ ··· 534y + 1
c
2
, c
4
y
24
8y
23
+ ··· 34y + 1
c
3
, c
8
y
24
21y
23
+ ··· 1040y + 64
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
24
34y
23
+ ··· 21y + 1
c
9
y
24
+ 26y
23
+ ··· 21y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.065440 + 0.105091I
a = 0.101056 1.017940I
b = 0.427572 + 0.787716I
4.78298 2.15986I 14.8245 + 3.7042I
u = 1.065440 0.105091I
a = 0.101056 + 1.017940I
b = 0.427572 0.787716I
4.78298 + 2.15986I 14.8245 3.7042I
u = 1.044560 + 0.293303I
a = 0.060787 0.485482I
b = 0.951447 + 0.437799I
0.73559 + 1.57187I 10.92931 1.48898I
u = 1.044560 0.293303I
a = 0.060787 + 0.485482I
b = 0.951447 0.437799I
0.73559 1.57187I 10.92931 + 1.48898I
u = 1.08841
a = 1.48671
b = 1.10653
6.35267 13.5900
u = 1.158950 + 0.291958I
a = 0.215884 + 1.148480I
b = 0.234965 0.552300I
0.44591 + 7.86280I 12.55352 5.99165I
u = 1.158950 0.291958I
a = 0.215884 1.148480I
b = 0.234965 + 0.552300I
0.44591 7.86280I 12.55352 + 5.99165I
u = 1.29716
a = 0.674636
b = 0.0175724
7.12889 9.59420
u = 0.413733 + 0.547171I
a = 0.390896 + 1.056560I
b = 0.969122 + 0.621169I
4.52862 4.98340I 8.25902 + 6.13145I
u = 0.413733 0.547171I
a = 0.390896 1.056560I
b = 0.969122 0.621169I
4.52862 + 4.98340I 8.25902 6.13145I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.292302 + 0.564711I
a = 0.90790 1.36582I
b = 0.567413 + 0.008562I
4.89005 + 1.34187I 6.87930 + 0.47018I
u = 0.292302 0.564711I
a = 0.90790 + 1.36582I
b = 0.567413 0.008562I
4.89005 1.34187I 6.87930 0.47018I
u = 0.544664
a = 0.533142
b = 0.444791
0.910827 10.5330
u = 0.260496 + 0.277785I
a = 1.25655 0.85026I
b = 0.092184 0.632306I
0.635329 + 0.918549I 9.38568 7.31949I
u = 0.260496 0.277785I
a = 1.25655 + 0.85026I
b = 0.092184 + 0.632306I
0.635329 0.918549I 9.38568 + 7.31949I
u = 0.266177
a = 2.54350
b = 0.862360
2.02344 2.35380
u = 1.73483 + 0.06615I
a = 1.05402 + 1.43450I
b = 1.58632 + 2.38877I
9.17857 2.99479I 11.67464 + 0.80624I
u = 1.73483 0.06615I
a = 1.05402 1.43450I
b = 1.58632 2.38877I
9.17857 + 2.99479I 11.67464 0.80624I
u = 1.74821 + 0.02394I
a = 0.42595 + 2.65836I
b = 0.53152 + 4.79437I
14.9721 + 2.6782I 14.7087 2.4859I
u = 1.74821 0.02394I
a = 0.42595 2.65836I
b = 0.53152 4.79437I
14.9721 2.6782I 14.7087 + 2.4859I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.75360
a = 0.586507
b = 1.87176
16.6700 14.3680
u = 1.76989 + 0.07670I
a = 1.04117 2.39816I
b = 2.07334 4.41830I
11.0119 9.4629I 13.6249 + 4.9785I
u = 1.76989 0.07670I
a = 1.04117 + 2.39816I
b = 2.07334 + 4.41830I
11.0119 + 9.4629I 13.6249 4.9785I
u = 1.81183
a = 1.26255
b = 2.55776
18.6696 7.58970
7
II. I
u
2
= hu
2
+ b 1, a + 1, u
3
+ u
2
2u 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
1
u
2
+ 1
a
8
=
u
u
2
u 1
a
4
=
1
u
2
+ 1
a
1
=
u
2
+ 1
u
2
+ u + 1
a
6
=
u
u
a
10
=
u
2
+ 1
u
2
a
5
=
u
2
1
u
2
u 1
a
2
=
u
2
2u
2
+ u + 2
a
9
=
u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ u 23
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
8
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
7
c
9
u
3
u
2
2u + 1
c
10
, c
11
, c
12
u
3
+ u
2
2u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
8
y
3
c
5
, c
6
, c
7
c
9
, c
10
, c
11
c
12
y
3
5y
2
+ 6y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.24698
a = 1.00000
b = 0.554958
7.98968 20.1980
u = 0.445042
a = 1.00000
b = 0.801938
2.34991 23.2470
u = 1.80194
a = 1.00000
b = 2.24698
19.2692 21.5550
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
24
+ 8u
23
+ ··· + 34u + 1)
c
2
((u 1)
3
)(u
24
4u
23
+ ··· + 6u 1)
c
3
, c
8
u
3
(u
24
+ u
23
+ ··· + 36u + 8)
c
4
((u + 1)
3
)(u
24
4u
23
+ ··· + 6u 1)
c
5
, c
6
, c
7
(u
3
u
2
2u + 1)(u
24
2u
23
+ ··· + u 1)
c
9
(u
3
u
2
2u + 1)(u
24
+ 2u
23
+ ··· + 7u + 1)
c
10
, c
11
, c
12
(u
3
+ u
2
2u 1)(u
24
2u
23
+ ··· + u 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
3
)(y
24
+ 20y
23
+ ··· 534y + 1)
c
2
, c
4
((y 1)
3
)(y
24
8y
23
+ ··· 34y + 1)
c
3
, c
8
y
3
(y
24
21y
23
+ ··· 1040y + 64)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y
3
5y
2
+ 6y 1)(y
24
34y
23
+ ··· 21y + 1)
c
9
(y
3
5y
2
+ 6y 1)(y
24
+ 26y
23
+ ··· 21y + 1)
13