12n
0237
(K12n
0237
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 11 12 3 1 6 8 7
Solving Sequence
8,11 4,12
3 9 7 1 2 6 10 5
c
11
c
3
c
8
c
7
c
12
c
1
c
6
c
10
c
5
c
2
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
41
+ u
40
+ ··· + b + 2u, u
41
+ u
40
+ ··· + a 4u, u
42
+ 2u
41
+ ··· + u + 1i
I
u
2
= h−u
4
+ u
3
2u
2
+ b + u, a, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
41
+ u
40
+ · · · +b + 2u, u
41
+ u
40
+ · · · +a 4u, u
42
+ 2u
41
+ · · · +u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
4
=
u
41
u
40
+ ··· + 2u
2
+ 4u
u
41
u
40
+ ··· 8u
2
2u
a
12
=
1
u
2
a
3
=
u
41
u
40
+ ··· + 2u
2
+ 4u
u
41
2u
40
+ ··· 2u 1
a
9
=
u
12
+ 5u
10
+ 9u
8
+ 4u
6
6u
4
5u
2
+ 1
u
14
+ 6u
12
+ 13u
10
+ 10u
8
4u
6
8u
4
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
9
+ 4u
7
+ 5u
5
3u
u
37
u
36
+ ··· + 8u
2
+ 2u
a
6
=
u
3
+ 2u
u
3
+ u
a
10
=
u
6
3u
4
2u
2
+ 1
u
6
2u
4
u
2
a
5
=
u
9
4u
7
5u
5
+ 3u
u
9
3u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
41
8u
40
+ ··· + 15u 9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
42
+ 13u
41
+ ··· + 28u + 1
c
2
, c
4
u
42
7u
41
+ ··· 8u + 1
c
3
, c
8
u
42
+ u
41
+ ··· + 192u + 64
c
5
, c
6
, c
10
u
42
2u
41
+ ··· 55u + 17
c
7
, c
11
, c
12
u
42
+ 2u
41
+ ··· + u + 1
c
9
u
42
+ 2u
41
+ ··· + 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
42
+ 39y
41
+ ··· 212y + 1
c
2
, c
4
y
42
13y
41
+ ··· 28y + 1
c
3
, c
8
y
42
39y
41
+ ··· 90112y + 4096
c
5
, c
6
, c
10
y
42
38y
41
+ ··· 4011y + 289
c
7
, c
11
, c
12
y
42
+ 34y
41
+ ··· 19y + 1
c
9
y
42
+ 46y
41
+ ··· 19y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.884997
a = 0.685840
b = 0.554744
8.59934 6.83080
u = 0.860411 + 0.091340I
a = 1.60817 + 0.83486I
b = 0.281208 + 1.248210I
1.28738 + 8.63776I 11.30852 5.50570I
u = 0.860411 0.091340I
a = 1.60817 0.83486I
b = 0.281208 1.248210I
1.28738 8.63776I 11.30852 + 5.50570I
u = 0.819362 + 0.102352I
a = 1.76027 0.48960I
b = 0.358516 0.802687I
0.15821 + 2.18866I 9.63326 1.25581I
u = 0.819362 0.102352I
a = 1.76027 + 0.48960I
b = 0.358516 + 0.802687I
0.15821 2.18866I 9.63326 + 1.25581I
u = 0.818580
a = 1.24094
b = 0.564691
7.20526 12.4480
u = 0.813444 + 0.036008I
a = 0.240335 1.364030I
b = 0.236106 1.145350I
5.56172 2.39562I 13.13795 + 3.14651I
u = 0.813444 0.036008I
a = 0.240335 + 1.364030I
b = 0.236106 + 1.145350I
5.56172 + 2.39562I 13.13795 3.14651I
u = 0.360418 + 1.144850I
a = 0.461015 + 1.052370I
b = 0.396025 + 0.874829I
3.34850 + 2.08589I 6.37713 2.84313I
u = 0.360418 1.144850I
a = 0.461015 1.052370I
b = 0.396025 0.874829I
3.34850 2.08589I 6.37713 + 2.84313I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.039780 + 1.228480I
a = 0.408011 + 0.443145I
b = 0.69289 + 2.43964I
1.48060 0.96666I 6.26750 1.40491I
u = 0.039780 1.228480I
a = 0.408011 0.443145I
b = 0.69289 2.43964I
1.48060 + 0.96666I 6.26750 + 1.40491I
u = 0.193377 + 1.231330I
a = 0.262816 + 0.483914I
b = 0.802069 + 0.546478I
2.73948 + 2.47038I 3.06420 3.92417I
u = 0.193377 1.231330I
a = 0.262816 0.483914I
b = 0.802069 0.546478I
2.73948 2.47038I 3.06420 + 3.92417I
u = 0.415470 + 1.179020I
a = 0.775903 0.927476I
b = 0.095078 0.588213I
2.05152 4.06193I 8.19749 + 0.I
u = 0.415470 1.179020I
a = 0.775903 + 0.927476I
b = 0.095078 + 0.588213I
2.05152 + 4.06193I 8.19749 + 0.I
u = 0.357741 + 1.238750I
a = 0.744213 0.408723I
b = 0.418778 1.322100I
1.85166 1.82090I 9.63780 + 0.I
u = 0.357741 1.238750I
a = 0.744213 + 0.408723I
b = 0.418778 + 1.322100I
1.85166 + 1.82090I 9.63780 + 0.I
u = 0.079247 + 1.295310I
a = 0.637223 0.258877I
b = 1.01766 1.34640I
4.02758 + 2.15699I 0
u = 0.079247 1.295310I
a = 0.637223 + 0.258877I
b = 1.01766 + 1.34640I
4.02758 2.15699I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.365234 + 1.269190I
a = 0.284658 0.718402I
b = 0.34989 2.35592I
3.26541 + 4.25757I 0
u = 0.365234 1.269190I
a = 0.284658 + 0.718402I
b = 0.34989 + 2.35592I
3.26541 4.25757I 0
u = 0.517463 + 0.417209I
a = 1.47848 1.77950I
b = 0.187293 1.152780I
4.73868 4.97358I 7.62188 + 6.30595I
u = 0.517463 0.417209I
a = 1.47848 + 1.77950I
b = 0.187293 + 1.152780I
4.73868 + 4.97358I 7.62188 6.30595I
u = 0.443990 + 0.494284I
a = 1.67760 + 1.53589I
b = 0.210344 + 0.860490I
5.02884 + 1.46246I 6.53686 + 0.89586I
u = 0.443990 0.494284I
a = 1.67760 1.53589I
b = 0.210344 0.860490I
5.02884 1.46246I 6.53686 0.89586I
u = 0.418536 + 1.277910I
a = 0.134196 0.433061I
b = 0.636951 0.103857I
4.63050 4.66445I 0
u = 0.418536 1.277910I
a = 0.134196 + 0.433061I
b = 0.636951 + 0.103857I
4.63050 + 4.66445I 0
u = 0.361948 + 1.295330I
a = 0.843712 + 0.183840I
b = 0.34096 + 1.49506I
1.40855 6.62685I 0
u = 0.361948 1.295330I
a = 0.843712 0.183840I
b = 0.34096 1.49506I
1.40855 + 6.62685I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.361210 + 1.333990I
a = 0.133728 + 1.145250I
b = 1.68733 + 2.67654I
4.66389 + 6.44264I 0
u = 0.361210 1.333990I
a = 0.133728 1.145250I
b = 1.68733 2.67654I
4.66389 6.44264I 0
u = 0.108456 + 1.380140I
a = 0.156921 1.186400I
b = 1.07791 4.11722I
10.88470 0.27094I 0
u = 0.108456 1.380140I
a = 0.156921 + 1.186400I
b = 1.07791 + 4.11722I
10.88470 + 0.27094I 0
u = 0.146369 + 1.377200I
a = 0.141022 + 1.192190I
b = 0.84503 + 4.22749I
10.39390 7.18776I 0
u = 0.146369 1.377200I
a = 0.141022 1.192190I
b = 0.84503 4.22749I
10.39390 + 7.18776I 0
u = 0.385158 + 1.335160I
a = 0.110632 1.155620I
b = 1.67195 2.97617I
3.18564 + 13.11100I 0
u = 0.385158 1.335160I
a = 0.110632 + 1.155620I
b = 1.67195 + 2.97617I
3.18564 13.11100I 0
u = 0.492418
a = 0.979682
b = 0.240678
0.983238 9.79060
u = 0.283222 + 0.253637I
a = 1.15749 + 1.43241I
b = 0.099702 + 0.442777I
0.614323 + 0.919516I 9.08610 7.37537I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.283222 0.253637I
a = 1.15749 1.43241I
b = 0.099702 0.442777I
0.614323 0.919516I 9.08610 + 7.37537I
u = 0.256764
a = 1.58568
b = 0.984824
2.02811 1.75710
9
II. I
u
2
= h−u
4
+ u
3
2u
2
+ b + u, a, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
4
=
0
u
4
u
3
+ 2u
2
u
a
12
=
1
u
2
a
3
=
0
u
4
u
3
+ 2u
2
u
a
9
=
0
u
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
2
+ 1
2u
4
u
3
+ 4u
2
u
a
6
=
u
3
+ 2u
u
3
+ u
a
10
=
u
5
2u
3
u
u
5
+ u
4
2u
3
+ u
2
u 1
a
5
=
u
2
1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
+ 6u
3
11u
2
+ 6u 17
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
8
u
6
c
4
(u + 1)
6
c
5
, c
6
, c
9
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
7
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
10
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
11
, c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
8
y
6
c
5
, c
6
, c
9
c
10
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
7
, c
11
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0
b = 0.567375
9.30502 19.0600
u = 0.138835 + 1.234450I
a = 0
b = 1.35607 + 0.92119I
1.31531 + 1.97241I 8.22189 4.83849I
u = 0.138835 1.234450I
a = 0
b = 1.35607 0.92119I
1.31531 1.97241I 8.22189 + 4.83849I
u = 0.408802 + 1.276380I
a = 0
b = 0.354716 0.801205I
5.34051 4.59213I 15.2853 + 2.7994I
u = 0.408802 1.276380I
a = 0
b = 0.354716 + 0.801205I
5.34051 + 4.59213I 15.2853 2.7994I
u = 0.413150
a = 0
b = 0.854195
2.38379 21.9250
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
42
+ 13u
41
+ ··· + 28u + 1)
c
2
((u 1)
6
)(u
42
7u
41
+ ··· 8u + 1)
c
3
, c
8
u
6
(u
42
+ u
41
+ ··· + 192u + 64)
c
4
((u + 1)
6
)(u
42
7u
41
+ ··· 8u + 1)
c
5
, c
6
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
42
2u
41
+ ··· 55u + 17)
c
7
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
42
+ 2u
41
+ ··· + u + 1)
c
9
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
42
+ 2u
41
+ ··· + 5u + 1)
c
10
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
42
2u
41
+ ··· 55u + 17)
c
11
, c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
42
+ 2u
41
+ ··· + u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
42
+ 39y
41
+ ··· 212y + 1)
c
2
, c
4
((y 1)
6
)(y
42
13y
41
+ ··· 28y + 1)
c
3
, c
8
y
6
(y
42
39y
41
+ ··· 90112y + 4096)
c
5
, c
6
, c
10
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
42
38y
41
+ ··· 4011y + 289)
c
7
, c
11
, c
12
(y
6
+ 5y
5
+ ··· 5y + 1)(y
42
+ 34y
41
+ ··· 19y + 1)
c
9
(y
6
7y
5
+ ··· 5y + 1)(y
42
+ 46y
41
+ ··· 19y + 1)
15