12n
0238
(K12n
0238
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 10 12 11 4 5 6 7 9
Solving Sequence
5,9
10 6
3,11
2 1 4 8 7 12
c
9
c
5
c
10
c
2
c
1
c
4
c
8
c
7
c
12
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−404722938u
20
1078466313u
19
+ ··· + 5499202867b 58406387,
4406297082u
20
+ 8871000551u
19
+ ··· + 5499202867a + 15450577476, u
21
+ 2u
20
+ ··· + 3u + 1i
I
u
2
= hb, u
5
+ u
4
+ 3u
3
2u
2
+ a 2u 1, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.05 × 10
8
u
20
1.08 × 10
9
u
19
+ · · · + 5.50 × 10
9
b 5.84 × 10
7
, 4.41 ×
10
9
u
20
+8.87×10
9
u
19
+· · ·+5.50×10
9
a+1.55×10
10
, u
21
+2u
20
+· · ·+3u+1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
0.801261u
20
1.61314u
19
+ ··· + 8.20107u 2.80960
0.0735967u
20
+ 0.196113u
19
+ ··· + 1.83312u + 0.0106209
a
11
=
u
2
+ 1
u
4
2u
2
a
2
=
0.801261u
20
1.61314u
19
+ ··· + 8.20107u 2.80960
u
a
1
=
0.265288u
20
+ 0.496064u
19
+ ··· + 3.71973u + 0.0807825
0.0710076u
20
0.0622947u
19
+ ··· 1.04835u 0.0356490
a
4
=
0.874858u
20
1.80926u
19
+ ··· + 6.36794u 2.82022
0.0735967u
20
+ 0.196113u
19
+ ··· + 1.83312u + 0.0106209
a
8
=
0.0356490u
20
+ 0.000290302u
19
+ ··· 0.113612u 0.941407
0.0345127u
20
0.0516588u
19
+ ··· + 0.715083u + 0.265288
a
7
=
0.0129414u
20
+ 0.219376u
19
+ ··· 0.396043u 1.03717
0.329095u
20
+ 0.210059u
19
+ ··· + 1.76622u + 0.634234
a
12
=
0.336296u
20
+ 0.558359u
19
+ ··· + 4.76808u + 0.116432
0.0710076u
20
0.0622947u
19
+ ··· 1.04835u 0.0356490
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
19796050041
5499202867
u
20
34864711542
5499202867
u
19
+ ··· +
105657040340
5499202867
u
58195456402
5499202867
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
u
20
+ ··· 10u + 1
c
2
, c
4
u
21
7u
20
+ ··· 4u + 1
c
3
, c
8
u
21
u
20
+ ··· + 64u + 64
c
5
, c
9
, c
10
u
21
+ 2u
20
+ ··· + 3u + 1
c
6
, c
7
, c
11
u
21
2u
20
+ ··· + u + 1
c
12
u
21
8u
20
+ ··· + 15665u 2537
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
+ 53y
20
+ ··· + 14y 1
c
2
, c
4
y
21
+ y
20
+ ··· 10y 1
c
3
, c
8
y
21
+ 39y
20
+ ··· + 71680y
2
4096
c
5
, c
9
, c
10
y
21
32y
20
+ ··· + 29y 1
c
6
, c
7
, c
11
y
21
+ 16y
20
+ ··· + 29y 1
c
12
y
21
116y
20
+ ··· + 451761953y 6436369
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.533638 + 0.732854I
a = 0.021350 + 0.475268I
b = 0.156517 + 0.629640I
3.26941 2.37868I 2.23871 + 4.16638I
u = 0.533638 0.732854I
a = 0.021350 0.475268I
b = 0.156517 0.629640I
3.26941 + 2.37868I 2.23871 4.16638I
u = 1.270070 + 0.160273I
a = 0.214865 + 0.848945I
b = 0.58338 + 1.42040I
4.18543 2.07978I 5.06109 + 1.69933I
u = 1.270070 0.160273I
a = 0.214865 0.848945I
b = 0.58338 1.42040I
4.18543 + 2.07978I 5.06109 1.69933I
u = 0.578863 + 0.221418I
a = 0.276951 + 0.590407I
b = 0.506741 + 0.461302I
1.037710 + 0.275110I 9.16776 1.72750I
u = 0.578863 0.221418I
a = 0.276951 0.590407I
b = 0.506741 0.461302I
1.037710 0.275110I 9.16776 + 1.72750I
u = 0.602512 + 0.112972I
a = 0.615716 1.104380I
b = 0.968514 0.190025I
1.76723 2.46823I 2.72362 + 4.48751I
u = 0.602512 0.112972I
a = 0.615716 + 1.104380I
b = 0.968514 + 0.190025I
1.76723 + 2.46823I 2.72362 4.48751I
u = 1.378270 + 0.285291I
a = 0.265526 + 0.752482I
b = 0.30372 + 1.44468I
7.49754 2.42009I 8.20075 + 2.52746I
u = 1.378270 0.285291I
a = 0.265526 0.752482I
b = 0.30372 1.44468I
7.49754 + 2.42009I 8.20075 2.52746I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43377 + 0.44455I
a = 0.268209 + 0.659406I
b = 0.094833 + 1.327870I
3.10341 + 6.65319I 3.92005 5.62951I
u = 1.43377 0.44455I
a = 0.268209 0.659406I
b = 0.094833 1.327870I
3.10341 6.65319I 3.92005 + 5.62951I
u = 0.192099 + 0.306787I
a = 1.15825 2.94256I
b = 0.472659 + 0.611670I
4.24122 + 1.01092I 0.113832 + 1.103661I
u = 0.192099 0.306787I
a = 1.15825 + 2.94256I
b = 0.472659 0.611670I
4.24122 1.01092I 0.113832 1.103661I
u = 0.208424
a = 4.36014
b = 0.397831
1.31628 11.0260
u = 1.83563 + 0.08011I
a = 0.602185 + 0.714479I
b = 0.39971 + 2.30587I
15.7454 + 0.6574I 4.16491 0.88898I
u = 1.83563 0.08011I
a = 0.602185 0.714479I
b = 0.39971 2.30587I
15.7454 0.6574I 4.16491 + 0.88898I
u = 1.86695 + 0.09495I
a = 0.612105 + 0.689039I
b = 0.50531 + 2.27337I
19.6581 + 4.5242I 7.10782 2.01921I
u = 1.86695 0.09495I
a = 0.612105 0.689039I
b = 0.50531 2.27337I
19.6581 4.5242I 7.10782 + 2.01921I
u = 1.88749 + 0.12006I
a = 0.609399 + 0.663862I
b = 0.57565 + 2.19938I
15.4586 9.6359I 3.81453 + 4.73258I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.88749 0.12006I
a = 0.609399 0.663862I
b = 0.57565 2.19938I
15.4586 + 9.6359I 3.81453 4.73258I
7
II.
I
u
2
= hb, u
5
+ u
4
+ 3u
3
2u
2
+ a 2u 1, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
5
u
4
3u
3
+ 2u
2
+ 2u + 1
0
a
11
=
u
2
+ 1
u
4
2u
2
a
2
=
u
5
u
4
3u
3
+ 2u
2
+ 2u + 1
u
a
1
=
0
u
a
4
=
u
5
u
4
3u
3
+ 2u
2
+ 2u + 1
0
a
8
=
1
0
a
7
=
u
5
+ 2u
3
+ u
u
5
3u
3
+ u
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
8u
3
+ 12u + 5
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
8
u
6
c
4
(u + 1)
6
c
5
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
6
, c
7
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
c
9
, c
10
, c
12
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
11
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
8
y
6
c
5
, c
9
, c
10
c
12
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
6
, c
7
, c
11
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.858925 1.001920I
b = 0
4.60518 1.97241I 3.77811 + 4.83849I
u = 0.493180 0.575288I
a = 0.858925 + 1.001920I
b = 0
4.60518 + 1.97241I 3.77811 4.83849I
u = 0.483672
a = 2.06752
b = 0
0.906083 9.92530
u = 1.52087 + 0.16310I
a = 0.650045 0.069710I
b = 0
2.05064 + 4.59213I 3.28527 2.79936I
u = 1.52087 0.16310I
a = 0.650045 + 0.069710I
b = 0
2.05064 4.59213I 3.28527 + 2.79936I
u = 1.53904
a = 0.649754
b = 0
6.01515 7.06030
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
21
u
20
+ ··· 10u + 1)
c
2
((u 1)
6
)(u
21
7u
20
+ ··· 4u + 1)
c
3
, c
8
u
6
(u
21
u
20
+ ··· + 64u + 64)
c
4
((u + 1)
6
)(u
21
7u
20
+ ··· 4u + 1)
c
5
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
21
+ 2u
20
+ ··· + 3u + 1)
c
6
, c
7
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
21
2u
20
+ ··· + u + 1)
c
9
, c
10
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
21
+ 2u
20
+ ··· + 3u + 1)
c
11
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
21
2u
20
+ ··· + u + 1)
c
12
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
21
8u
20
+ ··· + 15665u 2537)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
21
+ 53y
20
+ ··· + 14y 1)
c
2
, c
4
((y 1)
6
)(y
21
+ y
20
+ ··· 10y 1)
c
3
, c
8
y
6
(y
21
+ 39y
20
+ ··· + 71680y
2
4096)
c
5
, c
9
, c
10
(y
6
7y
5
+ ··· 5y + 1)(y
21
32y
20
+ ··· + 29y 1)
c
6
, c
7
, c
11
(y
6
+ 5y
5
+ ··· 5y + 1)(y
21
+ 16y
20
+ ··· + 29y 1)
c
12
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
21
116y
20
+ ··· + 451761953y 6436369)
13