12n
0240
(K12n
0240
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 11 12 3 1 8 7 6
Solving Sequence
6,11
7 12
3,8
4 1 10 5 2 9
c
6
c
11
c
7
c
3
c
12
c
10
c
5
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
45
+ u
44
+ ··· + b + 2u, 2u
45
+ 2u
44
+ ··· + a + 8u, u
46
2u
45
+ ··· + u + 1i
I
u
2
= hu
3
+ b u + 1, u
6
3u
4
+ 2u
2
+ a + 1, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
45
+u
44
+· · ·+b+2u, 2u
45
+2u
44
+· · ·+a+8u, u
46
2u
45
+· · ·+u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
3
+ u
a
3
=
2u
45
2u
44
+ ··· + 10u
2
8u
u
45
u
44
+ ··· + 5u
2
2u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
4u
45
4u
44
+ ··· 10u 1
u
45
u
44
+ ··· + 4u
2
3u
a
1
=
u
3
2u
u
3
+ u
a
10
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
5
=
u
12
+ 5u
10
9u
8
+ 6u
6
u
2
+ 1
u
14
+ 6u
12
13u
10
+ 10u
8
+ 2u
6
4u
4
u
2
a
2
=
u
45
u
44
+ ··· 8u + 1
u
45
u
44
+ ··· + 5u
2
u
a
9
=
u
13
6u
11
+ 13u
9
10u
7
2u
5
+ 4u
3
+ u
u
13
+ 5u
11
9u
9
+ 6u
7
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
45
+ 56u
43
+ ··· 5u 1
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
46
+ 11u
45
+ ··· + 25u + 1
c
2
, c
4
u
46
9u
45
+ ··· 9u + 1
c
3
, c
8
u
46
+ u
45
+ ··· + 1152u + 256
c
5
u
46
2u
45
+ ··· + 2660u + 1960
c
6
, c
7
, c
11
u
46
+ 2u
45
+ ··· u + 1
c
9
u
46
+ 2u
45
+ ··· + 7u + 1
c
10
, c
12
u
46
6u
45
+ ··· 73u + 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
46
+ 57y
45
+ ··· 21y + 1
c
2
, c
4
y
46
11y
45
+ ··· 25y + 1
c
3
, c
8
y
46
51y
45
+ ··· 1490944y + 65536
c
5
y
46
+ 18y
45
+ ··· 21367920y + 3841600
c
6
, c
7
, c
11
y
46
38y
45
+ ··· 17y + 1
c
9
y
46
+ 54y
45
+ ··· 17y + 1
c
10
, c
12
y
46
+ 34y
45
+ ··· 5737y + 289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.088878 + 0.844041I
a = 3.37742 1.22551I
b = 2.98228 + 0.61868I
11.39320 + 1.80249I 2.43037 0.91952I
u = 0.088878 0.844041I
a = 3.37742 + 1.22551I
b = 2.98228 0.61868I
11.39320 1.80249I 2.43037 + 0.91952I
u = 0.116026 + 0.837306I
a = 3.46305 + 1.35399I
b = 3.14660 0.77902I
10.46260 + 9.14915I 3.66280 5.53840I
u = 0.116026 0.837306I
a = 3.46305 1.35399I
b = 3.14660 + 0.77902I
10.46260 9.14915I 3.66280 + 5.53840I
u = 1.141830 + 0.219995I
a = 0.660574 + 0.098342I
b = 0.127713 0.217138I
1.38478 0.54129I 5.73844 + 0.I
u = 1.141830 0.219995I
a = 0.660574 0.098342I
b = 0.127713 + 0.217138I
1.38478 + 0.54129I 5.73844 + 0.I
u = 0.058004 + 0.794656I
a = 1.48803 0.66681I
b = 1.176270 + 0.234722I
3.97447 2.81253I 2.78364 + 4.01547I
u = 0.058004 0.794656I
a = 1.48803 + 0.66681I
b = 1.176270 0.234722I
3.97447 + 2.81253I 2.78364 4.01547I
u = 1.139460 + 0.393221I
a = 1.60826 + 1.63861I
b = 2.48711 + 1.35446I
7.33193 4.71190I 6.52326 + 0.I
u = 1.139460 0.393221I
a = 1.60826 1.63861I
b = 2.48711 1.35446I
7.33193 + 4.71190I 6.52326 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.175260 + 0.396885I
a = 1.58950 1.52874I
b = 2.60724 1.21777I
8.06092 + 2.65955I 0
u = 1.175260 0.396885I
a = 1.58950 + 1.52874I
b = 2.60724 + 1.21777I
8.06092 2.65955I 0
u = 0.027447 + 0.752835I
a = 2.58406 0.48560I
b = 1.92495 + 0.96879I
1.16885 + 1.15848I 5.01072 + 0.12391I
u = 0.027447 0.752835I
a = 2.58406 + 0.48560I
b = 1.92495 0.96879I
1.16885 1.15848I 5.01072 0.12391I
u = 0.135112 + 0.737338I
a = 0.263549 0.833035I
b = 0.030415 + 0.576766I
1.53760 3.03900I 1.98360 + 5.04098I
u = 0.135112 0.737338I
a = 0.263549 + 0.833035I
b = 0.030415 0.576766I
1.53760 + 3.03900I 1.98360 5.04098I
u = 1.215480 + 0.337571I
a = 0.103389 + 1.085520I
b = 0.822594 + 0.083089I
0.425497 1.277230I 0
u = 1.215480 0.337571I
a = 0.103389 1.085520I
b = 0.822594 0.083089I
0.425497 + 1.277230I 0
u = 1.259210 + 0.309211I
a = 0.456708 + 1.219730I
b = 2.37986 0.29804I
2.63767 + 2.66589I 0
u = 1.259210 0.309211I
a = 0.456708 1.219730I
b = 2.37986 + 0.29804I
2.63767 2.66589I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.308600 + 0.052486I
a = 0.039504 + 0.254143I
b = 0.45316 1.39921I
5.32887 + 1.91338I 0
u = 1.308600 0.052486I
a = 0.039504 0.254143I
b = 0.45316 + 1.39921I
5.32887 1.91338I 0
u = 1.31477
a = 1.61451
b = 0.0640641
6.82836 12.1040
u = 0.494895 + 0.460674I
a = 0.357271 1.172810I
b = 0.450500 0.532533I
5.38865 + 5.18412I 6.71823 6.02395I
u = 0.494895 0.460674I
a = 0.357271 + 1.172810I
b = 0.450500 + 0.532533I
5.38865 5.18412I 6.71823 + 6.02395I
u = 1.291940 + 0.323151I
a = 1.15932 1.41965I
b = 1.49071 1.53239I
2.95162 5.04688I 0
u = 1.291940 0.323151I
a = 1.15932 + 1.41965I
b = 1.49071 + 1.53239I
2.95162 + 5.04688I 0
u = 0.418017 + 0.505684I
a = 0.149306 + 0.739200I
b = 0.653704 + 0.563087I
5.63155 1.66298I 5.86083 1.14993I
u = 0.418017 0.505684I
a = 0.149306 0.739200I
b = 0.653704 0.563087I
5.63155 + 1.66298I 5.86083 + 1.14993I
u = 1.307310 + 0.347945I
a = 0.790380 0.475352I
b = 1.45484 0.59474I
0.29502 + 6.93232I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.307310 0.347945I
a = 0.790380 + 0.475352I
b = 1.45484 + 0.59474I
0.29502 6.93232I 0
u = 1.366120 + 0.148240I
a = 0.533420 0.484870I
b = 0.989531 + 0.198012I
0.048597 0.512586I 0
u = 1.366120 0.148240I
a = 0.533420 + 0.484870I
b = 0.989531 0.198012I
0.048597 + 0.512586I 0
u = 1.345150 + 0.312918I
a = 0.253414 + 0.362467I
b = 0.191334 0.810458I
3.12507 + 6.85143I 0
u = 1.345150 0.312918I
a = 0.253414 0.362467I
b = 0.191334 + 0.810458I
3.12507 6.85143I 0
u = 1.329650 + 0.375534I
a = 0.49137 + 2.28669I
b = 3.08691 0.08101I
6.94740 6.18607I 0
u = 1.329650 0.375534I
a = 0.49137 2.28669I
b = 3.08691 + 0.08101I
6.94740 + 6.18607I 0
u = 1.38696
a = 0.181617
b = 0.699740
7.20797 0
u = 1.345460 + 0.367374I
a = 0.43223 2.36028I
b = 3.46843 + 0.20726I
5.8692 13.4842I 0
u = 1.345460 0.367374I
a = 0.43223 + 2.36028I
b = 3.46843 0.20726I
5.8692 + 13.4842I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.390620 + 0.107679I
a = 0.514855 + 0.841670I
b = 0.807363 0.612141I
0.55483 6.96949I 0
u = 1.390620 0.107679I
a = 0.514855 0.841670I
b = 0.807363 + 0.612141I
0.55483 + 6.96949I 0
u = 0.582853
a = 0.782593
b = 0.178233
1.21098 7.83090
u = 0.282232 + 0.263140I
a = 0.99274 1.11009I
b = 0.157868 + 0.383616I
0.549820 0.931505I 8.30910 + 7.33237I
u = 0.282232 0.263140I
a = 0.99274 + 1.11009I
b = 0.157868 0.383616I
0.549820 + 0.931505I 8.30910 7.33237I
u = 0.263046
a = 2.94586
b = 0.883552
2.04174 0.290920
9
II.
I
u
2
= hu
3
+b u +1, u
6
3u
4
+2u
2
+a +1, u
8
+u
7
3u
6
2u
5
+3u
4
+2u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
3
+ u
a
3
=
u
6
+ 3u
4
2u
2
1
u
3
+ u 1
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
6
+ 3u
4
2u
2
1
u
3
+ u 1
a
1
=
u
3
2u
u
3
+ u
a
10
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
5
=
u
3
+ 2u
u
3
u
a
2
=
u
6
+ 3u
4
+ u
3
2u
2
2u 1
2u
3
+ 2u 1
a
9
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
6u
6
+ 2u
5
+ 16u
4
5u
3
9u
2
+ 8u 21
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
8
u
8
c
4
(u + 1)
8
c
5
, c
9
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
6
, c
7
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
10
, c
12
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
11
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
8
y
8
c
5
, c
9
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
6
, c
7
, c
11
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
10
, c
12
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.325934 + 0.693334I
b = 1.20799 0.83423I
2.68559 1.13123I 10.92586 + 0.21647I
u = 1.180120 0.268597I
a = 0.325934 0.693334I
b = 1.20799 + 0.83423I
2.68559 + 1.13123I 10.92586 0.21647I
u = 0.108090 + 0.747508I
a = 1.03462 0.99451I
b = 0.711982 + 1.138990I
0.51448 2.57849I 8.77377 + 3.25417I
u = 0.108090 0.747508I
a = 1.03462 + 0.99451I
b = 0.711982 1.138990I
0.51448 + 2.57849I 8.77377 3.25417I
u = 1.37100
a = 0.801005
b = 0.205997
8.14766 19.8990
u = 1.334530 + 0.318930I
a = 0.842429 0.289836I
b = 0.365014 1.352640I
4.02461 + 6.44354I 14.3478 4.5473I
u = 1.334530 0.318930I
a = 0.842429 + 0.289836I
b = 0.365014 + 1.352640I
4.02461 6.44354I 14.3478 + 4.5473I
u = 0.463640
a = 1.30123
b = 0.636025
2.48997 19.0060
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
46
+ 11u
45
+ ··· + 25u + 1)
c
2
((u 1)
8
)(u
46
9u
45
+ ··· 9u + 1)
c
3
, c
8
u
8
(u
46
+ u
45
+ ··· + 1152u + 256)
c
4
((u + 1)
8
)(u
46
9u
45
+ ··· 9u + 1)
c
5
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
46
2u
45
+ ··· + 2660u + 1960)
c
6
, c
7
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
46
+ 2u
45
+ ··· u + 1)
c
9
(u
8
u
7
+ ··· + 2u 1)(u
46
+ 2u
45
+ ··· + 7u + 1)
c
10
, c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
46
6u
45
+ ··· 73u + 17)
c
11
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)(u
46
+ 2u
45
+ ··· u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
46
+ 57y
45
+ ··· 21y + 1)
c
2
, c
4
((y 1)
8
)(y
46
11y
45
+ ··· 25y + 1)
c
3
, c
8
y
8
(y
46
51y
45
+ ··· 1490944y + 65536)
c
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
46
+ 18y
45
+ ··· 21367920y + 3841600)
c
6
, c
7
, c
11
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
46
38y
45
+ ··· 17y + 1)
c
9
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
46
+ 54y
45
+ ··· 17y + 1)
c
10
, c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
46
+ 34y
45
+ ··· 5737y + 289)
15