12n
0241
(K12n
0241
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 12 11 10 4 5 6 7 9
Solving Sequence
3,9 4,5
10 2 1 8 7 12 6 11
c
3
c
9
c
2
c
1
c
8
c
7
c
12
c
5
c
11
c
4
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.03137 × 10
66
u
36
+ 6.98280 × 10
65
u
35
+ ··· + 2.95081 × 10
68
b 1.06268 × 10
68
,
3.77823 × 10
67
u
36
2.87660 × 10
67
u
35
+ ··· + 2.36065 × 10
69
a + 2.08922 × 10
69
,
u
37
u
36
+ ··· + 128u + 256i
I
v
1
= ha, b 1, v
8
v
7
v
6
+ 2v
5
+ v
4
2v
3
+ 2v 1i
* 2 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.03 × 10
66
u
36
+ 6.98 × 10
65
u
35
+ · · · + 2.95 × 10
68
b 1.06 ×
10
68
, 3.78 × 10
67
u
36
2.88 × 10
67
u
35
+ · · · + 2.36 × 10
69
a + 2.09 ×
10
69
, u
37
u
36
+ · · · + 128u + 256i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
0.0160050u
36
+ 0.0121856u
35
+ ··· 8.06518u 0.885020
0.00349520u
36
0.00236640u
35
+ ··· + 1.79889u + 0.360133
a
10
=
0.0133199u
36
+ 0.0418348u
35
+ ··· + 0.507839u + 12.6265
0.00381941u
36
0.0132824u
35
+ ··· + 0.836374u 4.09729
a
2
=
0.0160050u
36
+ 0.0121856u
35
+ ··· 8.06518u 0.885020
0.00596782u
36
0.00520306u
35
+ ··· + 2.78728u + 0.617635
a
1
=
0.0100372u
36
+ 0.00698258u
35
+ ··· 5.27790u 0.267385
0.00596782u
36
0.00520306u
35
+ ··· + 2.78728u + 0.617635
a
8
=
u
u
3
+ u
a
7
=
0.0154489u
36
+ 0.0231599u
35
+ ··· 4.79943u + 5.30651
0.000302840u
36
+ 0.00840424u
35
+ ··· + 2.35144u + 2.54004
a
12
=
0.0100372u
36
+ 0.00698258u
35
+ ··· 5.27790u 0.267385
0.0110751u
36
0.00839995u
35
+ ··· + 5.74781u + 1.39963
a
6
=
0.0440610u
36
+ 0.0321408u
35
+ ··· 23.2326u 5.35412
0.0221974u
36
0.0147892u
35
+ ··· + 12.6696u + 3.48847
a
11
=
0.0148066u
36
+ 0.00829427u
35
+ ··· 11.4914u 1.08615
0.00186082u
36
+ 0.00671544u
35
+ ··· + 3.81289u + 3.67874
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0751690u
36
+ 0.0952069u
35
+ ··· 23.9143u + 7.79267
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
37
+ 5u
36
+ ··· 5u + 1
c
2
, c
4
u
37
9u
36
+ ··· 7u + 1
c
3
, c
8
u
37
u
36
+ ··· + 128u + 256
c
5
, c
7
u
37
+ 6u
36
+ ··· + 35u + 5
c
6
, c
10
, c
11
u
37
2u
36
+ ··· + 3u + 1
c
9
u
37
+ 2u
36
+ ··· + 3u + 1
c
12
u
37
8u
36
+ ··· + 2082719u 154033
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
37
+ 63y
36
+ ··· y 1
c
2
, c
4
y
37
5y
36
+ ··· 5y 1
c
3
, c
8
y
37
+ 51y
36
+ ··· 475136y 65536
c
5
, c
7
y
37
+ 16y
36
+ ··· + 735y 25
c
6
, c
10
, c
11
y
37
32y
36
+ ··· + 27y 1
c
9
y
37
48y
36
+ ··· + 27y 1
c
12
y
37
84y
36
+ ··· + 1848165923715y 23726165089
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.878368 + 0.497461I
a = 0.626443 + 0.343621I
b = 0.227102 0.673098I
0.66892 + 2.27408I 1.99793 4.76069I
u = 0.878368 0.497461I
a = 0.626443 0.343621I
b = 0.227102 + 0.673098I
0.66892 2.27408I 1.99793 + 4.76069I
u = 0.756357 + 0.569885I
a = 0.466384 0.081501I
b = 1.080620 + 0.363590I
0.61705 4.41139I 2.87485 + 3.50022I
u = 0.756357 0.569885I
a = 0.466384 + 0.081501I
b = 1.080620 0.363590I
0.61705 + 4.41139I 2.87485 3.50022I
u = 0.491761 + 0.952107I
a = 0.695040 + 0.682945I
b = 0.267990 0.719272I
6.82750 1.30632I 10.37535 + 1.68426I
u = 0.491761 0.952107I
a = 0.695040 0.682945I
b = 0.267990 + 0.719272I
6.82750 + 1.30632I 10.37535 1.68426I
u = 0.886724 + 0.087993I
a = 0.586081 0.184026I
b = 0.553122 + 0.487673I
2.29551 + 0.52381I 5.03075 + 0.94889I
u = 0.886724 0.087993I
a = 0.586081 + 0.184026I
b = 0.553122 0.487673I
2.29551 0.52381I 5.03075 0.94889I
u = 0.366615 + 0.752594I
a = 0.451654 0.034286I
b = 1.201400 + 0.167112I
0.11703 + 2.14687I 4.21868 4.14096I
u = 0.366615 0.752594I
a = 0.451654 + 0.034286I
b = 1.201400 0.167112I
0.11703 2.14687I 4.21868 + 4.14096I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.040136 + 0.830344I
a = 1.19957 1.19424I
b = 0.581327 + 0.416814I
1.73939 + 7.30260I 6.40314 7.32057I
u = 0.040136 0.830344I
a = 1.19957 + 1.19424I
b = 0.581327 0.416814I
1.73939 7.30260I 6.40314 + 7.32057I
u = 0.563224 + 0.605095I
a = 0.466156 + 0.056547I
b = 1.114100 0.256450I
3.61155 + 1.05730I 2.65114 + 0.19593I
u = 0.563224 0.605095I
a = 0.466156 0.056547I
b = 1.114100 + 0.256450I
3.61155 1.05730I 2.65114 0.19593I
u = 0.981996 + 0.654437I
a = 0.572407 0.396675I
b = 0.180218 + 0.817886I
4.10036 5.71187I 7.23097 + 5.43034I
u = 0.981996 0.654437I
a = 0.572407 + 0.396675I
b = 0.180218 0.817886I
4.10036 + 5.71187I 7.23097 5.43034I
u = 0.066568 + 0.771395I
a = 1.33592 + 1.03307I
b = 0.531570 0.362239I
2.71712 3.28265I 1.87410 + 4.96573I
u = 0.066568 0.771395I
a = 1.33592 1.03307I
b = 0.531570 + 0.362239I
2.71712 + 3.28265I 1.87410 4.96573I
u = 0.419103 + 0.595983I
a = 0.910599 0.447643I
b = 0.115558 + 0.434784I
1.109940 + 0.478757I 7.85612 2.59030I
u = 0.419103 0.595983I
a = 0.910599 + 0.447643I
b = 0.115558 0.434784I
1.109940 0.478757I 7.85612 + 2.59030I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.077849 + 0.690240I
a = 1.50612 0.77029I
b = 0.473705 + 0.269170I
0.539059 0.667337I 5.56096 0.61157I
u = 0.077849 0.690240I
a = 1.50612 + 0.77029I
b = 0.473705 0.269170I
0.539059 + 0.667337I 5.56096 + 0.61157I
u = 0.407194
a = 0.525318
b = 0.903607
1.31151 10.2650
u = 0.39124 + 1.82665I
a = 0.068005 + 0.975912I
b = 1.07106 1.01973I
9.29659 4.13983I 0
u = 0.39124 1.82665I
a = 0.068005 0.975912I
b = 1.07106 + 1.01973I
9.29659 + 4.13983I 0
u = 0.24251 + 1.87487I
a = 0.000094 + 0.931629I
b = 0.99989 1.07339I
9.54816 3.51968I 0
u = 0.24251 1.87487I
a = 0.000094 0.931629I
b = 0.99989 + 1.07339I
9.54816 + 3.51968I 0
u = 0.48778 + 1.83564I
a = 0.120525 0.976988I
b = 1.12438 + 1.00821I
6.99297 + 8.38148I 0
u = 0.48778 1.83564I
a = 0.120525 + 0.976988I
b = 1.12438 1.00821I
6.99297 8.38148I 0
u = 0.13124 + 1.93107I
a = 0.037828 0.886275I
b = 0.95193 + 1.12627I
7.58072 0.60625I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13124 1.93107I
a = 0.037828 + 0.886275I
b = 0.95193 1.12627I
7.58072 + 0.60625I 0
u = 0.53822 + 1.86696I
a = 0.147624 + 0.960917I
b = 1.15619 1.01668I
12.0430 12.4368I 0
u = 0.53822 1.86696I
a = 0.147624 0.960917I
b = 1.15619 + 1.01668I
12.0430 + 12.4368I 0
u = 0.09684 + 2.00647I
a = 0.036196 + 0.850721I
b = 0.95008 1.17335I
12.76300 + 4.48472I 0
u = 0.09684 2.00647I
a = 0.036196 0.850721I
b = 0.95008 + 1.17335I
12.76300 4.48472I 0
u = 0.35556 + 2.00636I
a = 0.066983 0.886854I
b = 1.08468 + 1.12119I
16.7972 + 4.0807I 0
u = 0.35556 2.00636I
a = 0.066983 + 0.886854I
b = 1.08468 1.12119I
16.7972 4.0807I 0
8
II. I
v
1
= ha, b 1, v
8
v
7
v
6
+ 2v
5
+ v
4
2v
3
+ 2v 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
5
=
0
1
a
10
=
v
v
a
2
=
1
1
a
1
=
0
1
a
8
=
v
0
a
7
=
v
3
+ v
v
3
a
12
=
v
2
1
a
6
=
v
4
v
2
+ 1
a
11
=
v
7
+ v
6
+ 2v
5
v
4
2v
3
+ 2v
2
+ 2v 1
v
7
2v
5
+ 2v
3
2v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6v
7
v
6
11v
5
+ 7v
4
+ 12v
3
6v
2
6v + 10
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
8
u
8
c
4
(u + 1)
8
c
5
, c
7
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
6
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
9
, c
12
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
10
, c
11
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
8
y
8
c
5
, c
7
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
6
, c
10
, c
11
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
9
, c
12
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.570868 + 0.730671I
a = 0
b = 1.00000
0.604279 1.131230I 1.074136 + 0.216470I
v = 0.570868 0.730671I
a = 0
b = 1.00000
0.604279 + 1.131230I 1.074136 0.216470I
v = 0.855237 + 0.665892I
a = 0
b = 1.00000
3.80435 2.57849I 3.22623 + 3.25417I
v = 0.855237 0.665892I
a = 0
b = 1.00000
3.80435 + 2.57849I 3.22623 3.25417I
v = 1.09818
a = 0
b = 1.00000
4.85780 7.89920
v = 1.031810 + 0.655470I
a = 0
b = 1.00000
0.73474 + 6.44354I 2.34782 4.54733I
v = 1.031810 0.655470I
a = 0
b = 1.00000
0.73474 6.44354I 2.34782 + 4.54733I
v = 0.603304
a = 0
b = 1.00000
0.799899 7.00590
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
37
+ 5u
36
+ ··· 5u + 1)
c
2
((u 1)
8
)(u
37
9u
36
+ ··· 7u + 1)
c
3
, c
8
u
8
(u
37
u
36
+ ··· + 128u + 256)
c
4
((u + 1)
8
)(u
37
9u
36
+ ··· 7u + 1)
c
5
, c
7
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
37
+ 6u
36
+ ··· + 35u + 5)
c
6
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)(u
37
2u
36
+ ··· + 3u + 1)
c
9
(u
8
u
7
+ ··· + 2u 1)(u
37
+ 2u
36
+ ··· + 3u + 1)
c
10
, c
11
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
37
2u
36
+ ··· + 3u + 1)
c
12
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
37
8u
36
+ ··· + 2082719u 154033)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
37
+ 63y
36
+ ··· y 1)
c
2
, c
4
((y 1)
8
)(y
37
5y
36
+ ··· 5y 1)
c
3
, c
8
y
8
(y
37
+ 51y
36
+ ··· 475136y 65536)
c
5
, c
7
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
37
+ 16y
36
+ ··· + 735y 25)
c
6
, c
10
, c
11
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
37
32y
36
+ ··· + 27y 1)
c
9
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
37
48y
36
+ ··· + 27y 1)
c
12
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
37
84y
36
+ ··· + 1848165923715y 23726165089)
14