12n
0242
(K12n
0242
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 10 11 12 3 5 6 7 8
Solving Sequence
6,10
11 7 12
3,5
2 1 4 9 8
c
10
c
6
c
11
c
5
c
2
c
1
c
4
c
9
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
2
+ a 2u, u
3
3u
2
+ 2u + 1i
I
u
2
= hb + u, u
2
+ a + 2, u
3
+ u
2
2u 1i
* 2 irreducible components of dim
C
= 0, with total 6 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
2
+ a 2u, u
3
3u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
3u
2
+ 3u + 1
a
12
=
u
2
+ 1
5u
2
+ 7u + 3
a
3
=
u
2
+ 2u
u
a
5
=
u
u
a
2
=
3u
2
3u 2
4u
2
4u 2
a
1
=
4u
2
+ 7u + 2
7u + 2
a
4
=
5u
2
+ 12u + 4
8u
2
+ 17u + 6
a
9
=
u
2
+ 1
u
2
a
8
=
3u
2
4u 1
5u
2
10u 4
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
u 19
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
13u
2
+ 51u + 1
c
2
, c
4
u
3
u
2
+ 7u + 1
c
3
, c
8
u
3
4u
2
+ 20u + 8
c
5
, c
6
, c
7
c
9
, c
10
, c
11
c
12
u
3
3u
2
+ 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
3
67y
2
+ 2627y 1
c
2
, c
4
y
3
+ 13y
2
+ 51y 1
c
3
, c
8
y
3
+ 24y
2
+ 464y 64
c
5
, c
6
, c
7
c
9
, c
10
, c
11
c
12
y
3
5y
2
+ 10y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.324718
a = 0.754878
b = 0.324718
0.531480 18.5700
u = 1.66236 + 0.56228I
a = 0.877439 0.744862I
b = 1.66236 + 0.56228I
4.66906 2.82812I 18.2151 + 1.3071I
u = 1.66236 0.56228I
a = 0.877439 + 0.744862I
b = 1.66236 0.56228I
4.66906 + 2.82812I 18.2151 1.3071I
5
II. I
u
2
= hb + u, u
2
+ a + 2, u
3
+ u
2
2u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
2
u 1
a
12
=
u
2
+ 1
u
2
+ u + 1
a
3
=
u
2
2
u
a
5
=
u
u
a
2
=
u
2
u 2
2u
a
1
=
u
u
a
4
=
u
2
2
u
a
9
=
u
2
+ 1
u
2
a
8
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
u 17
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
8
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
7
u
3
u
2
2u + 1
c
9
, c
10
, c
11
c
12
u
3
+ u
2
2u 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
8
y
3
c
5
, c
6
, c
7
c
9
, c
10
, c
11
c
12
y
3
5y
2
+ 6y 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.24698
a = 0.445042
b = 1.24698
7.98968 19.8020
u = 0.445042
a = 1.80194
b = 0.445042
2.34991 16.7530
u = 1.80194
a = 1.24698
b = 1.80194
19.2692 18.4450
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
(u
3
13u
2
+ 51u + 1)
c
2
(u 1)
3
(u
3
u
2
+ 7u + 1)
c
3
, c
8
u
3
(u
3
4u
2
+ 20u + 8)
c
4
(u + 1)
3
(u
3
u
2
+ 7u + 1)
c
5
, c
6
, c
7
(u
3
3u
2
+ 2u + 1)(u
3
u
2
2u + 1)
c
9
, c
10
, c
11
c
12
(u
3
3u
2
+ 2u + 1)(u
3
+ u
2
2u 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
3
(y
3
67y
2
+ 2627y 1)
c
2
, c
4
(y 1)
3
(y
3
+ 13y
2
+ 51y 1)
c
3
, c
8
y
3
(y
3
+ 24y
2
+ 464y 64)
c
5
, c
6
, c
7
c
9
, c
10
, c
11
c
12
(y
3
5y
2
+ 6y 1)(y
3
5y
2
+ 10y 1)
11