12n
0245
(K12n
0245
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 11 10 12 3 5 6 8 7
Solving Sequence
5,11 3,6
2 1 4 10 7 9 8 12
c
5
c
2
c
1
c
4
c
10
c
6
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
9
u
8
+ 5u
7
7u
6
+ 9u
5
16u
4
+ 7u
3
10u
2
+ 4b + 3u + 3,
u
9
+ 3u
8
+ 5u
7
+ 5u
6
+ 5u
5
8u
4
5u
3
22u
2
+ 8a u 5,
u
10
+ 4u
8
2u
7
+ 6u
6
7u
5
+ 3u
4
7u
3
+ u
2
2u 1i
I
u
2
= h22u
15
+ 71u
14
+ ··· + 125b + 158, 121u
15
+ 203u
14
+ ··· + 125a 6, u
16
+ 2u
15
+ ··· + 2u + 1i
I
u
3
= hb + 1, u
2
+ 2a + u + 3, u
3
+ 2u 1i
I
u
4
= hb + 1, u
3
+ u
2
+ a + u + 2, u
4
+ u
3
+ 2u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
9
u
8
+ · · · + 4b + 3, u
9
+ 3u
8
+ · · · + 8a 5, u
10
+ 4u
8
+ · · · 2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
1
8
u
9
3
8
u
8
+ ··· +
1
8
u +
5
8
1
4
u
9
+
1
4
u
8
+ ···
3
4
u
3
4
a
6
=
1
u
2
a
2
=
3
8
u
9
1
8
u
8
+ ···
5
8
u
1
8
1
4
u
9
+
1
4
u
8
+ ···
3
4
u
3
4
a
1
=
u
3
2u
u
9
+ 3u
7
2u
6
+ 2u
5
5u
4
3u
3
2u
2
a
4
=
13
8
u
9
+
1
8
u
8
+ ···
3
8
u +
1
8
5
4
u
9
+
1
4
u
8
+ ···
3
4
u
3
4
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
8
=
1
u
8
+ 3u
6
2u
5
+ 3u
4
5u
3
u
2
2u 1
a
12
=
u
u
9
+ 3u
7
2u
6
+ 3u
5
5u
4
u
3
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
15
16
u
9
51
16
u
8
+
51
16
u
7
197
16
u
6
+
171
16
u
5
35
2
u
4
+
293
16
u
3
53
8
u
2
+
145
16
u
219
16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 14u
9
+ ··· + 625u + 16
c
2
, c
4
u
10
2u
9
5u
8
+ 7u
7
+ 14u
6
36u
4
8u
3
+ 42u
2
17u 4
c
3
, c
8
u
10
+ 3u
9
+ ··· + 88u + 32
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
10
+ 4u
8
2u
7
+ 6u
6
7u
5
+ 3u
4
7u
3
+ u
2
2u 1
c
9
u
10
6u
9
+ 9u
8
+ 2u
7
+ 7u
6
51u
5
+ 50u
4
20u
3
+ 7u
2
4u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
34y
9
+ ··· 333665y + 256
c
2
, c
4
y
10
14y
9
+ ··· 625y + 16
c
3
, c
8
y
10
15y
9
+ ··· 3392y + 1024
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
10
+ 8y
9
+ ··· 6y + 1
c
9
y
10
18y
9
+ ··· 72y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.408860 + 1.019830I
a = 0.623231 0.763538I
b = 0.84308 + 1.25661I
0.76752 + 5.23818I 10.88397 7.30305I
u = 0.408860 1.019830I
a = 0.623231 + 0.763538I
b = 0.84308 1.25661I
0.76752 5.23818I 10.88397 + 7.30305I
u = 1.10481
a = 1.89244
b = 1.98176
16.4276 16.3110
u = 0.331850 + 0.653227I
a = 0.698518 + 0.937685I
b = 1.56733 0.09555I
1.76206 1.44138I 14.1408 + 4.6887I
u = 0.331850 0.653227I
a = 0.698518 0.937685I
b = 1.56733 + 0.09555I
1.76206 + 1.44138I 14.1408 4.6887I
u = 0.24366 + 1.40906I
a = 0.325341 0.085189I
b = 0.683278 0.384377I
8.38588 4.49014I 3.00164 + 0.77612I
u = 0.24366 1.40906I
a = 0.325341 + 0.085189I
b = 0.683278 + 0.384377I
8.38588 + 4.49014I 3.00164 0.77612I
u = 0.56211 + 1.36382I
a = 0.87591 + 1.14263I
b = 1.81943 0.43136I
7.9485 + 11.8019I 10.95990 5.74637I
u = 0.56211 1.36382I
a = 0.87591 1.14263I
b = 1.81943 + 0.43136I
7.9485 11.8019I 10.95990 + 5.74637I
u = 0.313895
a = 0.848562
b = 0.166359
0.552314 17.9670
5
II. I
u
2
= h22u
15
+ 71u
14
+ · · · + 125b + 158, 121u
15
+ 203u
14
+ · · · + 125a
6, u
16
+ 2u
15
+ · · · + 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
0.968000u
15
1.62400u
14
+ ··· 0.976000u + 0.0480000
0.176000u
15
0.568000u
14
+ ··· 0.632000u 1.26400
a
6
=
1
u
2
a
2
=
1.14400u
15
2.19200u
14
+ ··· 1.60800u 1.21600
0.176000u
15
0.568000u
14
+ ··· 0.632000u 1.26400
a
1
=
1.93600u
15
3.24800u
14
+ ··· 1.95200u 2.90400
0.496000u
15
0.328000u
14
+ ··· + 1.12800u 0.744000
a
4
=
2.03200u
15
2.37600u
14
+ ··· 3.02400u 1.04800
1.03200u
15
1.37600u
14
+ ··· 2.02400u 2.04800
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
8
=
0.784000u
15
+ 0.712000u
14
+ ··· + 3.08800u + 1.17600
0.904000u
15
+ 0.872000u
14
+ ··· + 0.928000u + 1.85600
a
12
=
0.144000u
15
1.19200u
14
+ ··· 0.608000u 1.21600
1.79200u
15
+ 2.05600u
14
+ ··· + 3.34400u + 1.68800
(ii) Obstruction class = 1
(iii) Cusp Shapes =
121
125
u
15
47
125
u
14
+ ··· +
622
125
u
1506
125
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 13u
7
+ 68u
6
+ 185u
5
+ 287u
4
+ 249u
3
+ 77u
2
+ 3u + 1)
2
c
2
, c
4
(u
8
3u
7
2u
6
+ 9u
5
+ 5u
4
13u
3
3u
2
+ 3u 1)
2
c
3
, c
8
(u
8
u
7
7u
6
+ 4u
5
+ 16u
4
+ 3u
3
9u
2
+ 8u 4)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
16
+ 2u
15
+ ··· + 2u + 1
c
9
(u
8
+ 2u
7
7u
6
12u
5
+ 5u
4
3u
3
2u
2
2u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
8
33y
7
+ ··· + 145y + 1)
2
c
2
, c
4
(y
8
13y
7
+ 68y
6
185y
5
+ 287y
4
249y
3
+ 77y
2
3y + 1)
2
c
3
, c
8
(y
8
15y
7
+ 89y
6
252y
5
+ 366y
4
305y
3
95y
2
+ 8y + 16)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
16
+ 10y
15
+ ··· + 12y
2
+ 1
c
9
(y
8
18y
7
+ 107y
6
206y
5
9y
4
91y
3
+ 2y
2
8y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.152816 + 1.034440I
a = 1.33690 2.28052I
b = 0.736738
2.18625 12.78715 + 0.I
u = 0.152816 1.034440I
a = 1.33690 + 2.28052I
b = 0.736738
2.18625 12.78715 + 0.I
u = 0.316903 + 0.894740I
a = 0.695071 + 1.182330I
b = 1.178780 0.606721I
1.14222 1.62541I 14.5850 + 1.4256I
u = 0.316903 0.894740I
a = 0.695071 1.182330I
b = 1.178780 + 0.606721I
1.14222 + 1.62541I 14.5850 1.4256I
u = 1.103920 + 0.013257I
a = 1.85395 + 0.11352I
b = 1.89776 + 0.22684I
12.14610 5.90409I 13.72541 + 2.82977I
u = 1.103920 0.013257I
a = 1.85395 0.11352I
b = 1.89776 0.22684I
12.14610 + 5.90409I 13.72541 2.82977I
u = 0.125010 + 1.233150I
a = 0.441765 0.140806I
b = 0.238510 + 0.243220I
2.92647 + 1.66195I 6.61632 3.48117I
u = 0.125010 1.233150I
a = 0.441765 + 0.140806I
b = 0.238510 0.243220I
2.92647 1.66195I 6.61632 + 3.48117I
u = 0.506035 + 0.355900I
a = 1.129350 0.256604I
b = 0.238510 0.243220I
2.92647 1.66195I 6.61632 + 3.48117I
u = 0.506035 0.355900I
a = 1.129350 + 0.256604I
b = 0.238510 + 0.243220I
2.92647 + 1.66195I 6.61632 3.48117I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.443597 + 0.298423I
a = 0.117192 0.758722I
b = 1.178780 0.606721I
1.14222 1.62541I 14.5850 + 1.4256I
u = 0.443597 0.298423I
a = 0.117192 + 0.758722I
b = 1.178780 + 0.606721I
1.14222 + 1.62541I 14.5850 1.4256I
u = 0.55989 + 1.37681I
a = 0.721990 1.125960I
b = 1.89776 + 0.22684I
12.14610 5.90409I 13.72541 + 2.82977I
u = 0.55989 1.37681I
a = 0.721990 + 1.125960I
b = 1.89776 0.22684I
12.14610 + 5.90409I 13.72541 2.82977I
u = 0.55749 + 1.39010I
a = 0.593934 + 1.012530I
b = 1.82176
7.78143 11.35940 + 0.I
u = 0.55749 1.39010I
a = 0.593934 1.012530I
b = 1.82176
7.78143 11.35940 + 0.I
10
III. I
u
3
= hb + 1, u
2
+ 2a + u + 3, u
3
+ 2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
1
2
u
2
1
2
u
3
2
1
a
6
=
1
u
2
a
2
=
1
2
u
2
1
2
u
5
2
1
a
1
=
1
0
a
4
=
1
2
u
2
1
2
u
3
2
1
a
10
=
u
u + 1
a
7
=
u
2
+ 1
u
a
9
=
1
u + 1
a
8
=
1
u + 1
a
12
=
u
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7
4
u
2
21
4
u
57
4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
8
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
7
u
3
+ 2u 1
c
9
u
3
+ 3u
2
+ 5u + 2
c
10
, c
11
, c
12
u
3
+ 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
8
y
3
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
3
+ 4y
2
+ 4y 1
c
9
y
3
+ y
2
+ 13y 4
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 0.335258 0.401127I
b = 1.00000
7.79580 + 5.13794I 9.37996 6.54094I
u = 0.22670 1.46771I
a = 0.335258 + 0.401127I
b = 1.00000
7.79580 5.13794I 9.37996 + 6.54094I
u = 0.453398
a = 1.82948
b = 1.00000
2.43213 16.9900
14
IV. I
u
4
= hb + 1, u
3
+ u
2
+ a + u + 2, u
4
+ u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
u
3
u
2
u 2
1
a
6
=
1
u
2
a
2
=
u
3
u
2
u 3
1
a
1
=
1
0
a
4
=
u
3
u
2
u 2
1
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
3
2u 1
a
9
=
u
3
+ 2u
u
3
+ u
a
8
=
u
3
+ 2u
u
3
+ u
a
12
=
2u
3
u
2
3u 3
u
3
u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u 15
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
8
u
4
c
4
(u + 1)
4
c
5
, c
6
, c
7
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
9
(u
2
u + 1)
2
c
10
, c
11
, c
12
u
4
u
3
+ 2u
2
2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
8
y
4
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
9
(y
2
+ y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 1.69244 0.31815I
b = 1.00000
1.64493 + 2.02988I 13.00000 3.46410I
u = 0.621744 0.440597I
a = 1.69244 + 0.31815I
b = 1.00000
1.64493 2.02988I 13.00000 + 3.46410I
u = 0.121744 + 1.306620I
a = 0.192440 + 0.547877I
b = 1.00000
1.64493 2.02988I 13.00000 + 3.46410I
u = 0.121744 1.306620I
a = 0.192440 0.547877I
b = 1.00000
1.64493 + 2.02988I 13.00000 3.46410I
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
7
· (u
8
+ 13u
7
+ 68u
6
+ 185u
5
+ 287u
4
+ 249u
3
+ 77u
2
+ 3u + 1)
2
· (u
10
+ 14u
9
+ ··· + 625u + 16)
c
2
(u 1)
7
(u
8
3u
7
2u
6
+ 9u
5
+ 5u
4
13u
3
3u
2
+ 3u 1)
2
· (u
10
2u
9
5u
8
+ 7u
7
+ 14u
6
36u
4
8u
3
+ 42u
2
17u 4)
c
3
, c
8
u
7
(u
8
u
7
7u
6
+ 4u
5
+ 16u
4
+ 3u
3
9u
2
+ 8u 4)
2
· (u
10
+ 3u
9
+ ··· + 88u + 32)
c
4
(u + 1)
7
(u
8
3u
7
2u
6
+ 9u
5
+ 5u
4
13u
3
3u
2
+ 3u 1)
2
· (u
10
2u
9
5u
8
+ 7u
7
+ 14u
6
36u
4
8u
3
+ 42u
2
17u 4)
c
5
, c
6
, c
7
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
10
+ 4u
8
2u
7
+ 6u
6
7u
5
+ 3u
4
7u
3
+ u
2
2u 1)
· (u
16
+ 2u
15
+ ··· + 2u + 1)
c
9
(u
2
u + 1)
2
(u
3
+ 3u
2
+ 5u + 2)
· (u
8
+ 2u
7
7u
6
12u
5
+ 5u
4
3u
3
2u
2
2u + 1)
2
· (u
10
6u
9
+ 9u
8
+ 2u
7
+ 7u
6
51u
5
+ 50u
4
20u
3
+ 7u
2
4u 4)
c
10
, c
11
, c
12
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)
· (u
10
+ 4u
8
2u
7
+ 6u
6
7u
5
+ 3u
4
7u
3
+ u
2
2u 1)
· (u
16
+ 2u
15
+ ··· + 2u + 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
7
)(y
8
33y
7
+ ··· + 145y + 1)
2
· (y
10
34y
9
+ ··· 333665y + 256)
c
2
, c
4
(y 1)
7
· (y
8
13y
7
+ 68y
6
185y
5
+ 287y
4
249y
3
+ 77y
2
3y + 1)
2
· (y
10
14y
9
+ ··· 625y + 16)
c
3
, c
8
y
7
(y
8
15y
7
+ 89y
6
252y
5
+ 366y
4
305y
3
95y
2
+ 8y + 16)
2
· (y
10
15y
9
+ ··· 3392y + 1024)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
10
+ 8y
9
+ ··· 6y + 1)
· (y
16
+ 10y
15
+ ··· + 12y
2
+ 1)
c
9
(y
2
+ y + 1)
2
(y
3
+ y
2
+ 13y 4)
· (y
8
18y
7
+ 107y
6
206y
5
9y
4
91y
3
+ 2y
2
8y + 1)
2
· (y
10
18y
9
+ ··· 72y + 16)
20