12n
0246
(K12n
0246
)
A knot diagram
1
Linearized knot diagam
3 5 10 2 10 11 1 12 3 7 6 8
Solving Sequence
7,10
11 6 12
3,5
2 1 4 9 8
c
10
c
6
c
11
c
5
c
2
c
1
c
4
c
9
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
14
+ u
13
+ 6u
12
+ 6u
11
+ 15u
10
+ 14u
9
+ 19u
8
+ 13u
7
+ 9u
6
+ 3u
5
5u
4
2u
3
5u
2
+ 2b + 1,
u
14
3u
13
+ ··· + 8a + 19,
u
15
+ 7u
13
+ 2u
12
+ 19u
11
+ 13u
10
+ 23u
9
+ 30u
8
+ 10u
7
+ 26u
6
u
4
+ 3u
3
9u
2
+ 3u + 1i
I
u
2
= h−716717u
25
+ 780792u
24
+ ··· + 963947b + 791849,
1775750u
25
1897723u
24
+ ··· + 963947a 1845988, u
26
2u
25
+ ··· 2u + 1i
I
u
3
= hb, u
2
+ 2a u 3, u
3
+ 2u 1i
I
u
4
= hb, u
3
+ a + u + 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
14
+u
13
+· · ·+2b+1, u
14
3u
13
+· · ·+8a+19, u
15
+7u
13
+· · ·+3u+1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
2u
2
a
3
=
1
8
u
14
+
3
8
u
13
+ ··· + 5u
19
8
1
2
u
14
1
2
u
13
+ ··· +
5
2
u
2
1
2
a
5
=
u
3
2u
u
3
+ u
a
2
=
3
8
u
14
+
1
8
u
13
+ ··· + 4u
25
8
u
3
+ u
a
1
=
1
u
13
+ 6u
11
+ 2u
10
+ 13u
9
+ 11u
8
+ 10u
7
+ 19u
6
+ 7u
4
7u
2
+ 3u + 1
a
4
=
3
8
u
14
+
7
8
u
13
+ ··· + 5u
15
8
1
2
u
14
1
2
u
13
+ ··· +
5
2
u
2
1
2
a
9
=
u
3
+ 2u
u
14
6u
12
2u
11
13u
10
11u
9
10u
8
19u
7
8u
5
+ 5u
3
3u
2
a
8
=
u
u
14
6u
12
2u
11
13u
10
11u
9
10u
8
19u
7
7u
5
+ 7u
3
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
49
16
u
14
45
16
u
13
22u
12
177
8
u
11
1069
16
u
10
579
8
u
9
1701
16
u
8
1839
16
u
7
1341
16
u
6
1299
16
u
5
199
16
u
4
29
8
u
3
+
267
16
u
2
+
37
2
u
123
16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 4u
14
+ ··· 127u + 16
c
2
, c
4
u
15
2u
14
+ ··· 11u + 4
c
3
, c
9
u
15
3u
14
+ ··· + 8u + 32
c
5
u
15
+ 6u
14
+ ··· + 16u + 4
c
6
, c
7
, c
8
c
10
, c
11
, c
12
u
15
+ 7u
13
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ 16y
14
+ ··· + 15841y 256
c
2
, c
4
y
15
4y
14
+ ··· 127y 16
c
3
, c
9
y
15
+ 15y
14
+ ··· + 320y 1024
c
5
y
15
16y
14
+ ··· + 408y 16
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
15
+ 14y
14
+ ··· + 27y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.939067 + 0.076154I
a = 0.11949 2.06723I
b = 0.27318 + 1.76916I
9.05174 3.68246I 5.44943 + 2.70726I
u = 0.939067 0.076154I
a = 0.11949 + 2.06723I
b = 0.27318 1.76916I
9.05174 + 3.68246I 5.44943 2.70726I
u = 0.231015 + 1.209380I
a = 0.202894 0.516586I
b = 1.71816 + 0.21702I
5.39974 5.30636I 4.44673 + 7.07969I
u = 0.231015 1.209380I
a = 0.202894 + 0.516586I
b = 1.71816 0.21702I
5.39974 + 5.30636I 4.44673 7.07969I
u = 0.072090 + 1.233060I
a = 0.067666 + 0.756607I
b = 0.93944 1.48122I
8.55605 + 1.99221I 8.96301 2.93013I
u = 0.072090 1.233060I
a = 0.067666 0.756607I
b = 0.93944 + 1.48122I
8.55605 1.99221I 8.96301 + 2.93013I
u = 0.446281 + 1.234210I
a = 0.890631 0.905985I
b = 0.39141 + 1.88678I
1.89371 + 6.18917I 0.33163 4.59933I
u = 0.446281 1.234210I
a = 0.890631 + 0.905985I
b = 0.39141 1.88678I
1.89371 6.18917I 0.33163 + 4.59933I
u = 0.45365 + 1.36129I
a = 1.09428 + 1.03938I
b = 0.73653 1.65036I
0.04752 + 13.68620I 2.00699 7.52630I
u = 0.45365 1.36129I
a = 1.09428 1.03938I
b = 0.73653 + 1.65036I
0.04752 13.68620I 2.00699 + 7.52630I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.511100 + 0.177219I
a = 0.649618 0.329498I
b = 0.434596 + 0.530398I
1.055330 + 0.384583I 8.52259 2.33147I
u = 0.511100 0.177219I
a = 0.649618 + 0.329498I
b = 0.434596 0.530398I
1.055330 0.384583I 8.52259 + 2.33147I
u = 0.21189 + 1.50842I
a = 0.299323 0.077409I
b = 0.130865 0.674935I
10.59470 5.64919I 0.00874 + 7.25798I
u = 0.21189 1.50842I
a = 0.299323 + 0.077409I
b = 0.130865 + 0.674935I
10.59470 + 5.64919I 0.00874 7.25798I
u = 0.202297
a = 3.51885
b = 0.401516
1.31450 10.7150
6
II.
I
u
2
= h−7.17 × 10
5
u
25
+ 7.81 × 10
5
u
24
+ · · · + 9.64 × 10
5
b + 7.92 × 10
5
, 1.78 ×
10
6
u
25
1.90×10
6
u
24
+· · · +9.64×10
5
a1.85×10
6
, u
26
2u
25
+· · · 2u +1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
2u
2
a
3
=
1.84217u
25
+ 1.96870u
24
+ ··· 7.48746u + 1.91503
0.743523u
25
0.809995u
24
+ ··· + 3.02101u 0.821465
a
5
=
u
3
2u
u
3
+ u
a
2
=
0.800732u
25
+ 0.943263u
24
+ ··· 3.90828u + 0.652479
u
3
+ u
a
1
=
0.679349u
25
+ 0.982915u
24
+ ··· + 5.45700u + 1.72423
0.456267u
25
0.655675u
24
+ ··· + 0.0722156u 1.37578
a
4
=
2.58569u
25
+ 2.77870u
24
+ ··· 10.5085u + 2.73650
0.743523u
25
0.809995u
24
+ ··· + 3.02101u 0.821465
a
9
=
1.25686u
25
1.88879u
24
+ ··· + 1.53675u 2.45627
0.476873u
25
+ 0.609237u
24
+ ··· + 0.104718u + 0.401848
a
8
=
0.624218u
25
1.70470u
24
+ ··· + 1.36553u 1.32065
0.632641u
25
0.184085u
24
+ ··· + 2.17122u 1.13562
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1918707
963947
u
25
2455152
963947
u
24
+ ···
5103125
963947
u +
1698759
963947
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
13
+ 3u
12
+ ··· + 8u + 1)
2
c
2
, c
4
(u
13
3u
12
+ ··· 2u + 1)
2
c
3
, c
9
(u
13
+ u
12
+ ··· + 4u 4)
2
c
5
(u
13
2u
12
+ ··· + 3u 1)
2
c
6
, c
7
, c
8
c
10
, c
11
, c
12
u
26
2u
25
+ ··· 2u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
13
+ 17y
12
+ ··· + 8y 1)
2
c
2
, c
4
(y
13
3y
12
+ ··· + 8y 1)
2
c
3
, c
9
(y
13
+ 15y
12
+ ··· 56y 16)
2
c
5
(y
13
16y
12
+ ··· + 5y 1)
2
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
26
+ 18y
25
+ ··· + 30y
2
+ 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.971054 + 0.087562I
a = 0.20122 1.96513I
b = 0.50699 + 1.66583I
4.58598 + 8.60203I 1.58542 5.32797I
u = 0.971054 0.087562I
a = 0.20122 + 1.96513I
b = 0.50699 1.66583I
4.58598 8.60203I 1.58542 + 5.32797I
u = 0.166889 + 1.040940I
a = 1.41794 1.71859I
b = 0.612460
4.29290 6.11820 + 0.I
u = 0.166889 1.040940I
a = 1.41794 + 1.71859I
b = 0.612460
4.29290 6.11820 + 0.I
u = 0.898765 + 0.068276I
a = 0.51103 2.01532I
b = 0.02169 + 1.76519I
5.49041 1.38297I 2.93425 + 0.71622I
u = 0.898765 0.068276I
a = 0.51103 + 2.01532I
b = 0.02169 1.76519I
5.49041 + 1.38297I 2.93425 0.71622I
u = 0.705153 + 0.526357I
a = 0.314624 0.599897I
b = 0.032142 + 0.650070I
3.89003 2.36301I 2.56487 + 4.19898I
u = 0.705153 0.526357I
a = 0.314624 + 0.599897I
b = 0.032142 0.650070I
3.89003 + 2.36301I 2.56487 4.19898I
u = 0.063428 + 1.135530I
a = 0.99806 + 1.21295I
b = 0.452299 0.637242I
4.25522 0.99909I 0.456384 0.581912I
u = 0.063428 1.135530I
a = 0.99806 1.21295I
b = 0.452299 + 0.637242I
4.25522 + 0.99909I 0.456384 + 0.581912I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.239526 + 1.122350I
a = 0.582484 0.652382I
b = 0.997974 + 0.288600I
1.68175 + 2.52293I 2.35428 4.38707I
u = 0.239526 1.122350I
a = 0.582484 + 0.652382I
b = 0.997974 0.288600I
1.68175 2.52293I 2.35428 + 4.38707I
u = 0.485725 + 1.232220I
a = 0.968192 0.729255I
b = 0.02169 + 1.76519I
5.49041 1.38297I 2.93425 + 0.71622I
u = 0.485725 1.232220I
a = 0.968192 + 0.729255I
b = 0.02169 1.76519I
5.49041 + 1.38297I 2.93425 0.71622I
u = 0.527181 + 1.230800I
a = 0.968929 0.539477I
b = 0.25689 + 1.55234I
1.07459 3.30324I 0.83610 + 2.39821I
u = 0.527181 1.230800I
a = 0.968929 + 0.539477I
b = 0.25689 1.55234I
1.07459 + 3.30324I 0.83610 2.39821I
u = 0.101397 + 1.371440I
a = 0.241803 0.465532I
b = 0.032142 0.650070I
3.89003 + 2.36301I 2.56487 4.19898I
u = 0.101397 1.371440I
a = 0.241803 + 0.465532I
b = 0.032142 + 0.650070I
3.89003 2.36301I 2.56487 + 4.19898I
u = 0.408597 + 1.339370I
a = 1.32284 + 0.50744I
b = 0.25689 1.55234I
1.07459 + 3.30324I 0.83610 2.39821I
u = 0.408597 1.339370I
a = 1.32284 0.50744I
b = 0.25689 + 1.55234I
1.07459 3.30324I 0.83610 + 2.39821I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.43667 + 1.34910I
a = 1.26249 + 0.83530I
b = 0.50699 1.66583I
4.58598 8.60203I 1.58542 + 5.32797I
u = 0.43667 1.34910I
a = 1.26249 0.83530I
b = 0.50699 + 1.66583I
4.58598 + 8.60203I 1.58542 5.32797I
u = 0.517741 + 0.054555I
a = 1.276610 0.533825I
b = 0.997974 0.288600I
1.68175 2.52293I 2.35428 + 4.38707I
u = 0.517741 0.054555I
a = 1.276610 + 0.533825I
b = 0.997974 + 0.288600I
1.68175 + 2.52293I 2.35428 4.38707I
u = 0.229089 + 0.294081I
a = 0.08363 4.21290I
b = 0.452299 + 0.637242I
4.25522 + 0.99909I 0.456384 + 0.581912I
u = 0.229089 0.294081I
a = 0.08363 + 4.21290I
b = 0.452299 0.637242I
4.25522 0.99909I 0.456384 0.581912I
12
III. I
u
3
= hb, u
2
+ 2a u 3, u
3
+ 2u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u + 1
a
12
=
u
2
+ 1
u
a
3
=
1
2
u
2
+
1
2
u +
3
2
0
a
5
=
1
u + 1
a
2
=
1
2
u
2
+
1
2
u +
5
2
u 1
a
1
=
1
u 1
a
4
=
1
2
u
2
+
1
2
u +
3
2
0
a
9
=
1
0
a
8
=
u
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
25
4
u
2
+
11
4
u +
23
4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
9
u
3
c
4
(u + 1)
3
c
5
u
3
+ 3u
2
+ 5u + 2
c
6
, c
7
, c
8
u
3
+ 2u + 1
c
10
, c
11
, c
12
u
3
+ 2u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
9
y
3
c
5
y
3
+ y
2
+ 13y 4
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
3
+ 4y
2
+ 4y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 0.335258 + 0.401127I
b = 0
11.08570 5.13794I 8.01583 0.12290I
u = 0.22670 1.46771I
a = 0.335258 0.401127I
b = 0
11.08570 + 5.13794I 8.01583 + 0.12290I
u = 0.453398
a = 1.82948
b = 0
0.857735 8.28170
16
IV. I
u
4
= hb, u
3
+ a + u + 1, u
4
+ u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
3
+ 2u + 1
a
3
=
u
3
u 1
0
a
5
=
u
3
2u
u
3
+ u
a
2
=
u 1
u
3
u
a
1
=
u
3
+ 2u
u
3
u
a
4
=
u
3
u 1
0
a
9
=
1
0
a
8
=
2u
3
+ u
2
+ 3u + 3
u
3
u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 3
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
9
u
4
c
4
(u + 1)
4
c
5
(u
2
u + 1)
2
c
6
, c
7
, c
8
u
4
u
3
+ 2u
2
2u + 1
c
10
, c
11
, c
12
u
4
+ u
3
+ 2u
2
+ 2u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
9
y
4
c
5
(y
2
+ y + 1)
2
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.500000 0.866025I
b = 0
4.93480 2.02988I 5.00000 + 3.46410I
u = 0.621744 0.440597I
a = 0.500000 + 0.866025I
b = 0
4.93480 + 2.02988I 5.00000 3.46410I
u = 0.121744 + 1.306620I
a = 0.500000 + 0.866025I
b = 0
4.93480 + 2.02988I 5.00000 3.46410I
u = 0.121744 1.306620I
a = 0.500000 0.866025I
b = 0
4.93480 2.02988I 5.00000 + 3.46410I
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
7
)(u
13
+ 3u
12
+ ··· + 8u + 1)
2
(u
15
+ 4u
14
+ ··· 127u + 16)
c
2
((u 1)
7
)(u
13
3u
12
+ ··· 2u + 1)
2
(u
15
2u
14
+ ··· 11u + 4)
c
3
, c
9
u
7
(u
13
+ u
12
+ ··· + 4u 4)
2
(u
15
3u
14
+ ··· + 8u + 32)
c
4
((u + 1)
7
)(u
13
3u
12
+ ··· 2u + 1)
2
(u
15
2u
14
+ ··· 11u + 4)
c
5
((u
2
u + 1)
2
)(u
3
+ 3u
2
+ 5u + 2)(u
13
2u
12
+ ··· + 3u 1)
2
· (u
15
+ 6u
14
+ ··· + 16u + 4)
c
6
, c
7
, c
8
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)(u
15
+ 7u
13
+ ··· + 3u + 1)
· (u
26
2u
25
+ ··· 2u + 1)
c
10
, c
11
, c
12
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
15
+ 7u
13
+ ··· + 3u + 1)
· (u
26
2u
25
+ ··· 2u + 1)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
7
)(y
13
+ 17y
12
+ ··· + 8y 1)
2
· (y
15
+ 16y
14
+ ··· + 15841y 256)
c
2
, c
4
((y 1)
7
)(y
13
3y
12
+ ··· + 8y 1)
2
(y
15
4y
14
+ ··· 127y 16)
c
3
, c
9
y
7
(y
13
+ 15y
12
+ ··· 56y 16)
2
(y
15
+ 15y
14
+ ··· + 320y 1024)
c
5
((y
2
+ y + 1)
2
)(y
3
+ y
2
+ 13y 4)(y
13
16y
12
+ ··· + 5y 1)
2
· (y
15
16y
14
+ ··· + 408y 16)
c
6
, c
7
, c
8
c
10
, c
11
, c
12
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
15
+ 14y
14
+ ··· + 27y 1)
· (y
26
+ 18y
25
+ ··· + 30y
2
+ 1)
22