12n
0247
(K12n
0247
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 11 10 12 4 5 6 8 7
Solving Sequence
5,11 3,6
2 1 4 10 7 9 8 12
c
5
c
2
c
1
c
4
c
10
c
6
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
17
+ 3u
16
+ ··· + 32b + 11, 29u
17
+ 7u
16
+ ··· + 64a + 79, u
18
+ 13u
16
+ ··· + u 1i
I
u
2
= h−345563974u
19
637671531u
18
+ ··· + 3761745161b + 3368246020,
21843240461u
19
+ 28442594981u
18
+ ··· + 63949667737a 48916675361,
u
20
+ 2u
19
+ ··· 4u + 17i
I
u
3
= hb + 1, u
2
+ 2a + u + 3, u
3
+ 2u 1i
I
u
4
= ha
2
u 2a
2
4au + 5b + 3a 5, a
3
+ 3a
2
u 2a
2
au a u 2, u
2
+ 1i
I
u
5
= hb + 1, u
3
+ u
2
+ a + u + 2, u
4
+ u
3
+ 2u
2
+ 2u + 1i
* 5 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3u
17
+ 3u
16
+ · · · + 32b + 11, 29u
17
+ 7u
16
+ · · · + 64a + 79, u
18
+
13u
16
+ · · · + u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
0.453125u
17
0.109375u
16
+ ··· 5.84375u 1.23438
0.0937500u
17
0.0937500u
16
+ ··· 0.812500u 0.343750
a
6
=
1
u
2
a
2
=
0.359375u
17
0.203125u
16
+ ··· 6.65625u 1.57813
0.0937500u
17
0.0937500u
16
+ ··· 0.812500u 0.343750
a
1
=
u
3
2u
1
8
u
16
3
2
u
14
+ ··· +
7
8
u +
1
8
a
4
=
0.640625u
17
0.296875u
16
+ ··· 5.59375u 1.17188
0.406250u
17
0.0937500u
16
+ ··· 0.562500u 0.843750
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
8
=
1
1
8
u
17
+
3
2
u
15
+ ···
23
8
u
2
1
8
u
a
12
=
u
1
8
u
16
3
2
u
14
+ ··· +
7
8
u +
1
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
229
128
u
17
33
128
u
16
+ ··· +
427
64
u
505
128
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 4u
17
+ ··· + 257u + 16
c
2
, c
4
u
18
4u
17
+ ··· + 13u 4
c
3
, c
8
u
18
+ 3u
17
+ ··· + 232u + 32
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
18
+ 13u
16
+ ··· + u 1
c
9
u
18
6u
17
+ ··· 256u 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 24y
17
+ ··· 22945y + 256
c
2
, c
4
y
18
4y
17
+ ··· 257y + 16
c
3
, c
8
y
18
21y
17
+ ··· 10560y + 1024
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
18
+ 26y
17
+ ··· 11y + 1
c
9
y
18
+ 26y
17
+ ··· 98304y + 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.513277 + 0.615531I
a = 0.69273 1.30024I
b = 0.926284 + 0.896765I
5.03715 4.73308I 6.17449 + 6.98654I
u = 0.513277 0.615531I
a = 0.69273 + 1.30024I
b = 0.926284 0.896765I
5.03715 + 4.73308I 6.17449 6.98654I
u = 0.322723 + 0.641738I
a = 0.511493 + 0.469718I
b = 0.907757 0.852129I
5.02936 + 1.72315I 6.30423 + 2.05854I
u = 0.322723 0.641738I
a = 0.511493 0.469718I
b = 0.907757 + 0.852129I
5.02936 1.72315I 6.30423 2.05854I
u = 0.20594 + 1.41832I
a = 0.550117 0.463999I
b = 0.820288 + 0.298128I
8.20719 5.81488I 1.58758 + 8.21476I
u = 0.20594 1.41832I
a = 0.550117 + 0.463999I
b = 0.820288 0.298128I
8.20719 + 5.81488I 1.58758 8.21476I
u = 0.559591
a = 1.08527
b = 0.320915
1.10260 8.67790
u = 0.274931 + 0.275799I
a = 0.85438 1.34319I
b = 0.518997 + 0.250386I
0.591534 + 0.915522I 8.76058 7.51611I
u = 0.274931 0.275799I
a = 0.85438 + 1.34319I
b = 0.518997 0.250386I
0.591534 0.915522I 8.76058 + 7.51611I
u = 0.04969 + 1.63263I
a = 0.017613 0.874719I
b = 1.39382 + 0.44407I
9.47411 + 1.71565I 2.49915 0.68525I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.04969 1.63263I
a = 0.017613 + 0.874719I
b = 1.39382 0.44407I
9.47411 1.71565I 2.49915 + 0.68525I
u = 0.39884 + 1.63329I
a = 0.30757 + 1.53003I
b = 1.25592 0.96097I
19.6148 + 12.8943I 2.00648 5.58395I
u = 0.39884 1.63329I
a = 0.30757 1.53003I
b = 1.25592 + 0.96097I
19.6148 12.8943I 2.00648 + 5.58395I
u = 0.16134 + 1.67469I
a = 0.135382 + 1.232190I
b = 0.453358 1.088430I
12.98160 4.39049I 1.06537 + 2.81298I
u = 0.16134 1.67469I
a = 0.135382 1.232190I
b = 0.453358 + 1.088430I
12.98160 + 4.39049I 1.06537 2.81298I
u = 0.264194
a = 3.30167
b = 1.07735
2.03333 1.10900
u = 0.33212 + 1.72012I
a = 0.652868 0.820297I
b = 0.83415 + 1.30011I
18.1326 + 4.7805I 0.86783 1.39495I
u = 0.33212 1.72012I
a = 0.652868 + 0.820297I
b = 0.83415 1.30011I
18.1326 4.7805I 0.86783 + 1.39495I
6
II. I
u
2
=
h−3.46×10
8
u
19
6.38×10
8
u
18
+· · ·+3.76×10
9
b+3.37×10
9
, 2.18×10
10
u
19
+
2.84 × 10
10
u
18
+ · · · + 6.39 × 10
10
a 4.89 × 10
10
, u
20
+ 2u
19
+ · · · 4u + 17i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
0.341569u
19
0.444765u
18
+ ··· 6.80195u + 0.764925
0.0918627u
19
+ 0.169515u
18
+ ··· + 1.48236u 0.895395
a
6
=
1
u
2
a
2
=
0.249707u
19
0.275251u
18
+ ··· 5.31959u 0.130470
0.0918627u
19
+ 0.169515u
18
+ ··· + 1.48236u 0.895395
a
1
=
0.0321030u
19
+ 0.154890u
18
+ ··· 1.20856u + 1.30329
0.0116403u
19
+ 0.0303223u
18
+ ··· 0.600017u + 0.446055
a
4
=
0.274136u
19
0.394973u
18
+ ··· 4.73485u 0.948502
0.105172u
19
+ 0.211195u
18
+ ··· + 1.77125u 1.07336
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
8
=
0.0540994u
19
+ 0.0710831u
18
+ ··· + 0.210536u + 1.58028
0.0628232u
19
0.0347199u
18
+ ··· 1.06815u + 1.63097
a
12
=
0.0217078u
19
+ 0.0194076u
18
+ ··· 3.38491u + 1.15498
0.0538109u
19
0.135483u
18
+ ··· 0.176349u 0.148305
(ii) Obstruction class = 1
(iii) Cusp Shapes =
687646779
3761745161
u
19
+
3390901343
3761745161
u
18
+ ··· +
12009014830
3761745161
u
7942008906
3761745161
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
10
+ u
9
+ 10u
8
+ 11u
7
+ 26u
6
+ 30u
5
+ u
4
14u
3
+ 3u
2
2u + 1)
2
c
2
, c
4
(u
10
3u
9
+ 4u
8
+ u
7
6u
6
+ 6u
5
+ u
4
2u
3
+ 3u
2
2u + 1)
2
c
3
, c
8
(u
10
u
9
7u
8
+ 8u
7
+ 13u
6
14u
5
2u
4
2u
3
+ 13u
2
12u + 4)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
20
+ 2u
19
+ ··· 4u + 17
c
9
(u
10
+ 2u
9
+ ··· 21u + 17)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ 19y
9
+ ··· + 2y + 1)
2
c
2
, c
4
(y
10
y
9
+ 10y
8
11y
7
+ 26y
6
30y
5
+ y
4
+ 14y
3
+ 3y
2
+ 2y + 1)
2
c
3
, c
8
(y
10
15y
9
+ ··· 40y + 16)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
20
+ 18y
19
+ ··· + 1480y + 289
c
9
(y
10
+ 26y
9
+ ··· + 2925y + 289)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.598226 + 0.786865I
a = 0.005030 + 0.155416I
b = 0.076965 0.657059I
4.43566 1.46073I 1.34069 + 3.28644I
u = 0.598226 0.786865I
a = 0.005030 0.155416I
b = 0.076965 + 0.657059I
4.43566 + 1.46073I 1.34069 3.28644I
u = 0.014778 + 1.179270I
a = 0.90480 + 1.65650I
b = 1.016000 0.211624I
1.39065 0.79591I 8.77960 0.81155I
u = 0.014778 1.179270I
a = 0.90480 1.65650I
b = 1.016000 + 0.211624I
1.39065 + 0.79591I 8.77960 + 0.81155I
u = 1.077400 + 0.591320I
a = 0.927031 + 0.754940I
b = 1.12142 1.03617I
12.6890 + 7.4068I 3.25674 4.41038I
u = 1.077400 0.591320I
a = 0.927031 0.754940I
b = 1.12142 + 1.03617I
12.6890 7.4068I 3.25674 + 4.41038I
u = 1.033740 + 0.754404I
a = 0.0441939 0.0300635I
b = 0.98889 + 1.13481I
13.15130 0.50253I 2.50299 0.08773I
u = 1.033740 0.754404I
a = 0.0441939 + 0.0300635I
b = 0.98889 1.13481I
13.15130 + 0.50253I 2.50299 + 0.08773I
u = 0.220229 + 1.263180I
a = 0.634760 + 0.673705I
b = 0.482659 0.410726I
2.87696 + 2.81207I 3.11998 4.64391I
u = 0.220229 1.263180I
a = 0.634760 0.673705I
b = 0.482659 + 0.410726I
2.87696 2.81207I 3.11998 + 4.64391I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.661189 + 0.252982I
a = 1.093740 + 0.337893I
b = 0.482659 + 0.410726I
2.87696 2.81207I 3.11998 + 4.64391I
u = 0.661189 0.252982I
a = 1.093740 0.337893I
b = 0.482659 0.410726I
2.87696 + 2.81207I 3.11998 4.64391I
u = 0.208282 + 0.650238I
a = 3.22497 1.66304I
b = 1.016000 + 0.211624I
1.39065 + 0.79591I 8.77960 + 0.81155I
u = 0.208282 0.650238I
a = 3.22497 + 1.66304I
b = 1.016000 0.211624I
1.39065 0.79591I 8.77960 0.81155I
u = 0.065595 + 1.361450I
a = 0.719320 1.166450I
b = 0.076965 + 0.657059I
4.43566 + 1.46073I 1.34069 3.28644I
u = 0.065595 1.361450I
a = 0.719320 + 1.166450I
b = 0.076965 0.657059I
4.43566 1.46073I 1.34069 + 3.28644I
u = 0.17643 + 1.61460I
a = 0.17553 1.65533I
b = 1.12142 + 1.03617I
12.6890 7.4068I 3.25674 + 4.41038I
u = 0.17643 1.61460I
a = 0.17553 + 1.65533I
b = 1.12142 1.03617I
12.6890 + 7.4068I 3.25674 4.41038I
u = 0.05299 + 1.63807I
a = 0.63412 + 1.33106I
b = 0.98889 1.13481I
13.15130 + 0.50253I 2.50299 + 0.08773I
u = 0.05299 1.63807I
a = 0.63412 1.33106I
b = 0.98889 + 1.13481I
13.15130 0.50253I 2.50299 0.08773I
11
III. I
u
3
= hb + 1, u
2
+ 2a + u + 3, u
3
+ 2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
1
2
u
2
1
2
u
3
2
1
a
6
=
1
u
2
a
2
=
1
2
u
2
1
2
u
5
2
1
a
1
=
1
0
a
4
=
1
2
u
2
1
2
u
3
2
1
a
10
=
u
u + 1
a
7
=
u
2
+ 1
u
a
9
=
1
u + 1
a
8
=
1
u + 1
a
12
=
u
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
25
4
u
2
11
4
u
71
4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
8
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
7
u
3
+ 2u 1
c
9
u
3
+ 3u
2
+ 5u + 2
c
10
, c
11
, c
12
u
3
+ 2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
8
y
3
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
3
+ 4y
2
+ 4y 1
c
9
y
3
+ y
2
+ 13y 4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 0.335258 0.401127I
b = 1.00000
7.79580 + 5.13794I 3.98417 + 0.12290I
u = 0.22670 1.46771I
a = 0.335258 + 0.401127I
b = 1.00000
7.79580 5.13794I 3.98417 0.12290I
u = 0.453398
a = 1.82948
b = 1.00000
2.43213 20.2820
15
IV.
I
u
4
= ha
2
u 2a
2
4au + 5b + 3a 5, a
3
+ 3a
2
u 2a
2
au a u 2, u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
a
1
5
a
2
u +
4
5
au + ···
3
5
a + 1
a
6
=
1
1
a
2
=
1
5
a
2
u +
4
5
au + ··· +
2
5
a + 1
1
5
a
2
u +
4
5
au + ···
3
5
a + 1
a
1
=
u
2
5
a
2
u
2
5
au + ··· +
4
5
a + 2
a
4
=
3
5
a
2
u
1
5
a
2
7
5
au
1
5
a
1
5
a
2
u
3
5
a
2
6
5
au +
7
5
a
a
10
=
u
0
a
7
=
0
1
a
9
=
u
0
a
8
=
1
1
5
a
2
u
4
5
au + ···
2
5
a
2
2
5
a
a
12
=
u
2
5
a
2
u
2
5
au + ··· +
4
5
a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
5
a
2
u +
8
5
a
2
+
16
5
au
12
5
a
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
, c
8
u
6
3u
4
+ 2u
2
+ 1
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(u
2
+ 1)
3
c
9
u
6
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
3
, c
8
(y
3
3y
2
+ 2y + 1)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y + 1)
6
c
9
y
6
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.684841 1.082500I
b = 0.877439 + 0.744862I
6.31400 2.82812I 0.49024 + 2.97945I
u = 1.000000I
a = 0.439718 + 0.407221I
b = 0.877439 0.744862I
6.31400 + 2.82812I 0.49024 2.97945I
u = 1.000000I
a = 1.75488 2.32472I
b = 0.754878
2.17641 7.01951 + 0.I
u = 1.000000I
a = 0.684841 + 1.082500I
b = 0.877439 0.744862I
6.31400 + 2.82812I 0.49024 2.97945I
u = 1.000000I
a = 0.439718 0.407221I
b = 0.877439 + 0.744862I
6.31400 2.82812I 0.49024 + 2.97945I
u = 1.000000I
a = 1.75488 + 2.32472I
b = 0.754878
2.17641 7.01951 + 0.I
19
V. I
u
5
= hb + 1, u
3
+ u
2
+ a + u + 2, u
4
+ u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
u
3
u
2
u 2
1
a
6
=
1
u
2
a
2
=
u
3
u
2
u 3
1
a
1
=
1
0
a
4
=
u
3
u
2
u 2
1
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
3
2u 1
a
9
=
u
3
+ 2u
u
3
+ u
a
8
=
u
3
+ 2u
u
3
+ u
a
12
=
2u
3
u
2
3u 3
u
3
u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u 9
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
8
u
4
c
4
(u + 1)
4
c
5
, c
6
, c
7
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
9
(u
2
u + 1)
2
c
10
, c
11
, c
12
u
4
u
3
+ 2u
2
2u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
8
y
4
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
9
(y
2
+ y + 1)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 1.69244 0.31815I
b = 1.00000
1.64493 + 2.02988I 7.00000 3.46410I
u = 0.621744 0.440597I
a = 1.69244 + 0.31815I
b = 1.00000
1.64493 2.02988I 7.00000 + 3.46410I
u = 0.121744 + 1.306620I
a = 0.192440 + 0.547877I
b = 1.00000
1.64493 2.02988I 7.00000 + 3.46410I
u = 0.121744 1.306620I
a = 0.192440 0.547877I
b = 1.00000
1.64493 + 2.02988I 7.00000 3.46410I
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
7
(u
3
u
2
+ 2u 1)
2
· (u
10
+ u
9
+ 10u
8
+ 11u
7
+ 26u
6
+ 30u
5
+ u
4
14u
3
+ 3u
2
2u + 1)
2
· (u
18
+ 4u
17
+ ··· + 257u + 16)
c
2
(u 1)
7
(u
3
+ u
2
1)
2
· (u
10
3u
9
+ 4u
8
+ u
7
6u
6
+ 6u
5
+ u
4
2u
3
+ 3u
2
2u + 1)
2
· (u
18
4u
17
+ ··· + 13u 4)
c
3
, c
8
u
7
(u
6
3u
4
+ 2u
2
+ 1)
· (u
10
u
9
7u
8
+ 8u
7
+ 13u
6
14u
5
2u
4
2u
3
+ 13u
2
12u + 4)
2
· (u
18
+ 3u
17
+ ··· + 232u + 32)
c
4
(u + 1)
7
(u
3
u
2
+ 1)
2
· (u
10
3u
9
+ 4u
8
+ u
7
6u
6
+ 6u
5
+ u
4
2u
3
+ 3u
2
2u + 1)
2
· (u
18
4u
17
+ ··· + 13u 4)
c
5
, c
6
, c
7
((u
2
+ 1)
3
)(u
3
+ 2u 1)(u
4
+ u
3
+ ··· + 2u + 1)(u
18
+ 13u
16
+ ··· + u 1)
· (u
20
+ 2u
19
+ ··· 4u + 17)
c
9
u
6
(u
2
u + 1)
2
(u
3
+ 3u
2
+ 5u + 2)(u
10
+ 2u
9
+ ··· 21u + 17)
2
· (u
18
6u
17
+ ··· 256u 256)
c
10
, c
11
, c
12
((u
2
+ 1)
3
)(u
3
+ 2u + 1)(u
4
u
3
+ ··· 2u + 1)(u
18
+ 13u
16
+ ··· + u 1)
· (u
20
+ 2u
19
+ ··· 4u + 17)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
7
)(y
3
+ 3y
2
+ 2y 1)
2
(y
10
+ 19y
9
+ ··· + 2y + 1)
2
· (y
18
+ 24y
17
+ ··· 22945y + 256)
c
2
, c
4
(y 1)
7
(y
3
y
2
+ 2y 1)
2
· (y
10
y
9
+ 10y
8
11y
7
+ 26y
6
30y
5
+ y
4
+ 14y
3
+ 3y
2
+ 2y + 1)
2
· (y
18
4y
17
+ ··· 257y + 16)
c
3
, c
8
y
7
(y
3
3y
2
+ 2y + 1)
2
(y
10
15y
9
+ ··· 40y + 16)
2
· (y
18
21y
17
+ ··· 10560y + 1024)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y + 1)
6
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
18
+ 26y
17
+ ··· 11y + 1)(y
20
+ 18y
19
+ ··· + 1480y + 289)
c
9
y
6
(y
2
+ y + 1)
2
(y
3
+ y
2
+ 13y 4)(y
10
+ 26y
9
+ ··· + 2925y + 289)
2
· (y
18
+ 26y
17
+ ··· 98304y + 65536)
25