12n
0249
(K12n
0249
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 12 11 3 1 8 7 6
Solving Sequence
7,11 3,8
4 12 6 1 10 5 2 9
c
7
c
3
c
11
c
6
c
12
c
10
c
5
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
25
+ 2u
24
+ ··· + b 1, u
27
+ 2u
26
+ ··· + a 2, u
28
+ 2u
27
+ ··· 3u 1i
I
u
2
= h−u
3
+ u
2
+ b 2u + 1, u
4
+ 3u
2
+ a + 1, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
* 2 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
25
+2u
24
+· · ·+b 1, u
27
+2u
26
+· · ·+a 2, u
28
+2u
27
+· · ·3u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
u
27
2u
26
+ ··· 4u + 2
u
25
2u
24
+ ··· + u + 1
a
8
=
1
u
2
a
4
=
2u
27
4u
26
+ ··· 2u + 3
u
27
+ 2u
26
+ ··· 3u
2
+ 1
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
1
=
u
3
2u
u
3
+ u
a
10
=
u
u
3
+ u
a
5
=
u
6
3u
4
+ 1
u
8
4u
6
4u
4
2u
2
a
2
=
u
27
u
26
+ ··· 6u + 2
u
26
2u
25
+ ··· + 2u + 1
a
9
=
u
9
+ 6u
7
+ 11u
5
+ 6u
3
+ u
u
9
5u
7
7u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
27
2u
26
21u
25
38u
24
192u
23
314u
22
1007u
21
1483u
20
3363u
19
4430u
18
7513u
17
8756u
16
11482u
15
11630u
14
12024u
13
10257u
12
8392u
11
5658u
10
3552u
9
1590u
8
624u
7
+ 24u
6
+ 115u
5
+ 133u
4
+ 47u
3
+ 22u
2
3u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 6u
27
+ ··· + 17u + 1
c
2
, c
4
u
28
6u
27
+ ··· + 5u 1
c
3
, c
8
u
28
+ u
27
+ ··· + 96u + 32
c
5
u
28
2u
27
+ ··· + 331u 445
c
6
, c
7
, c
10
c
11
, c
12
u
28
2u
27
+ ··· + 3u 1
c
9
u
28
+ 2u
27
+ ··· + 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
+ 38y
27
+ ··· 17y + 1
c
2
, c
4
y
28
6y
27
+ ··· 17y + 1
c
3
, c
8
y
28
33y
27
+ ··· 14848y + 1024
c
5
y
28
+ 22y
27
+ ··· 315151y + 198025
c
6
, c
7
, c
10
c
11
, c
12
y
28
+ 38y
27
+ ··· 15y + 1
c
9
y
28
+ 34y
27
+ ··· 15y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.152944 + 1.016320I
a = 1.019950 0.193834I
b = 0.647472 0.451263I
3.33821 2.49897I 1.28357 + 4.65842I
u = 0.152944 1.016320I
a = 1.019950 + 0.193834I
b = 0.647472 + 0.451263I
3.33821 + 2.49897I 1.28357 4.65842I
u = 0.068154 + 0.917237I
a = 1.70138 0.42865I
b = 0.734706 + 1.073090I
0.674371 + 1.046210I 3.66596 + 0.45443I
u = 0.068154 0.917237I
a = 1.70138 + 0.42865I
b = 0.734706 1.073090I
0.674371 1.046210I 3.66596 0.45443I
u = 0.285643 + 0.852384I
a = 0.007992 0.695316I
b = 0.322158 + 0.381569I
1.29412 2.63752I 1.01481 + 5.30921I
u = 0.285643 0.852384I
a = 0.007992 + 0.695316I
b = 0.322158 0.381569I
1.29412 + 2.63752I 1.01481 5.30921I
u = 0.329759 + 1.077170I
a = 1.84555 + 1.40687I
b = 1.245350 0.642218I
9.87396 + 8.39825I 2.23865 5.97376I
u = 0.329759 1.077170I
a = 1.84555 1.40687I
b = 1.245350 + 0.642218I
9.87396 8.39825I 2.23865 + 5.97376I
u = 0.274632 + 1.124510I
a = 1.67793 1.18741I
b = 0.957433 + 0.342031I
10.62160 + 1.12711I 1.11248 1.21587I
u = 0.274632 1.124510I
a = 1.67793 + 1.18741I
b = 0.957433 0.342031I
10.62160 1.12711I 1.11248 + 1.21587I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.540472 + 0.396254I
a = 0.247984 + 1.063200I
b = 1.162050 + 0.222187I
5.82690 1.64297I 5.31123 0.95700I
u = 0.540472 0.396254I
a = 0.247984 1.063200I
b = 1.162050 0.222187I
5.82690 + 1.64297I 5.31123 + 0.95700I
u = 0.578535 + 0.310326I
a = 0.10564 1.64155I
b = 1.025040 0.012062I
5.55026 + 5.30570I 6.25062 5.57146I
u = 0.578535 0.310326I
a = 0.10564 + 1.64155I
b = 1.025040 + 0.012062I
5.55026 5.30570I 6.25062 + 5.57146I
u = 0.487302
a = 0.909458
b = 0.360823
1.29054 7.57330
u = 0.303248 + 0.234862I
a = 0.89894 1.21637I
b = 0.057075 + 0.523211I
0.528965 0.938472I 8.01967 + 7.23093I
u = 0.303248 0.234862I
a = 0.89894 + 1.21637I
b = 0.057075 0.523211I
0.528965 + 0.938472I 8.01967 7.23093I
u = 0.06577 + 1.67605I
a = 0.310611 + 0.424504I
b = 0.225680 1.128100I
10.18720 3.94206I 0. + 4.56823I
u = 0.06577 1.67605I
a = 0.310611 0.424504I
b = 0.225680 + 1.128100I
10.18720 + 3.94206I 0. 4.56823I
u = 0.01320 + 1.71171I
a = 1.60962 + 0.03543I
b = 3.88484 0.84278I
10.13260 + 1.33652I 3.41446 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.01320 1.71171I
a = 1.60962 0.03543I
b = 3.88484 + 0.84278I
10.13260 1.33652I 3.41446 + 0.I
u = 0.03667 + 1.72969I
a = 0.912721 + 0.574767I
b = 2.22990 0.67323I
13.19840 3.25610I 0
u = 0.03667 1.72969I
a = 0.912721 0.574767I
b = 2.22990 + 0.67323I
13.19840 + 3.25610I 0
u = 0.08755 + 1.74259I
a = 2.19448 0.74449I
b = 5.13344 + 2.15584I
19.5529 + 10.1409I 0
u = 0.08755 1.74259I
a = 2.19448 + 0.74449I
b = 5.13344 2.15584I
19.5529 10.1409I 0
u = 0.253230
a = 3.12683
b = 0.636261
2.04618 0.133650
u = 0.06900 + 1.75500I
a = 2.19704 + 0.73339I
b = 5.04246 1.77736I
18.5160 + 2.5730I 0
u = 0.06900 1.75500I
a = 2.19704 0.73339I
b = 5.04246 + 1.77736I
18.5160 2.5730I 0
7
II.
I
u
2
= h−u
3
+ u
2
+ b 2u + 1, u
4
+ 3u
2
+ a + 1, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
u
4
3u
2
1
u
3
u
2
+ 2u 1
a
8
=
1
u
2
a
4
=
u
4
3u
2
1
u
3
u
2
+ 2u 1
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
1
=
u
3
2u
u
3
+ u
a
10
=
u
u
3
+ u
a
5
=
u
3
+ 2u
u
3
u
a
2
=
u
4
u
3
3u
2
2u 1
2u
3
u
2
+ 3u 1
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
+ 5u
3
20u
2
+ 14u 21
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
8
u
5
c
4
(u + 1)
5
c
5
, c
9
u
5
u
4
+ u
2
+ u 1
c
6
, c
7
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
10
, c
11
, c
12
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
8
y
5
c
5
, c
9
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
c
6
, c
7
, c
10
c
11
, c
12
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 0.827780 0.637683I
b = 0.340036 + 0.807849I
0.17487 2.21397I 7.62657 + 4.39306I
u = 0.233677 0.885557I
a = 0.827780 + 0.637683I
b = 0.340036 0.807849I
0.17487 + 2.21397I 7.62657 4.39306I
u = 0.416284
a = 1.54991
b = 0.268586
2.52712 18.4270
u = 0.05818 + 1.69128I
a = 0.552827 + 0.534136I
b = 1.47433 1.63485I
9.31336 3.33174I 6.15976 + 1.26157I
u = 0.05818 1.69128I
a = 0.552827 0.534136I
b = 1.47433 + 1.63485I
9.31336 + 3.33174I 6.15976 1.26157I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
28
+ 6u
27
+ ··· + 17u + 1)
c
2
((u 1)
5
)(u
28
6u
27
+ ··· + 5u 1)
c
3
, c
8
u
5
(u
28
+ u
27
+ ··· + 96u + 32)
c
4
((u + 1)
5
)(u
28
6u
27
+ ··· + 5u 1)
c
5
(u
5
u
4
+ u
2
+ u 1)(u
28
2u
27
+ ··· + 331u 445)
c
6
, c
7
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)(u
28
2u
27
+ ··· + 3u 1)
c
9
(u
5
u
4
+ u
2
+ u 1)(u
28
+ 2u
27
+ ··· + 5u + 1)
c
10
, c
11
, c
12
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
28
2u
27
+ ··· + 3u 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
28
+ 38y
27
+ ··· 17y + 1)
c
2
, c
4
((y 1)
5
)(y
28
6y
27
+ ··· 17y + 1)
c
3
, c
8
y
5
(y
28
33y
27
+ ··· 14848y + 1024)
c
5
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)(y
28
+ 22y
27
+ ··· 315151y + 198025)
c
6
, c
7
, c
10
c
11
, c
12
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
28
+ 38y
27
+ ··· 15y + 1)
c
9
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)(y
28
+ 34y
27
+ ··· 15y + 1)
13