12n
0250
(K12n
0250
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 12 11 10 4 5 7 6 9
Solving Sequence
6,11
7 12
2,5
3 1 4 10 8 9
c
6
c
11
c
5
c
2
c
1
c
4
c
10
c
7
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
21
2u
20
+ ··· + b 1, u
24
2u
23
+ ··· + a + 3, u
25
2u
24
+ ··· + 5u 1i
I
u
2
= hu
2
+ b + u + 1, u
4
u
3
3u
2
+ a 2u 1, u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1i
* 2 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
21
2u
20
+· · ·+b 1, u
24
2u
23
+· · ·+a +3, u
25
2u
24
+· · ·+5u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
a
2
=
u
24
+ 2u
23
+ ··· + 2u 3
u
21
+ 2u
20
+ ··· u + 1
a
5
=
u
2
+ 1
u
2
a
3
=
u
24
+ 2u
23
+ ··· + 2u 4
u
22
11u
20
+ ··· u + 1
a
1
=
u
13
+ 8u
11
+ 23u
9
+ 30u
7
+ 20u
5
+ 6u
3
+ u
u
13
+ 7u
11
+ 15u
9
+ 8u
7
4u
5
3u
3
+ u
a
4
=
u
24
2u
23
+ ··· + u + 3
u
22
+ 2u
21
+ ··· + 2u 1
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
u
7
4u
5
4u
3
2u
u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
24
+ 2u
23
18u
22
+ 32u
21
142u
20
+ 222u
19
644u
18
+
875u
17
1848u
16
+ 2155u
15
3472u
14
+ 3429u
13
4258u
12
+ 3506u
11
3270u
10
+
2195u
9
1387u
8
+ 732u
7
164u
6
+ 62u
5
+ 90u
4
28u
3
+ 16u
2
3u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
25
+ 4u
24
+ ··· 5u + 1
c
2
, c
4
u
25
6u
24
+ ··· 5u + 1
c
3
, c
8
u
25
u
24
+ ··· + 32u + 32
c
5
, c
6
, c
7
c
10
, c
11
u
25
+ 2u
24
+ ··· + 5u + 1
c
9
u
25
+ 2u
24
+ ··· + 3u + 1
c
12
u
25
8u
24
+ ··· + 14437u 1751
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
25
+ 40y
24
+ ··· 5y 1
c
2
, c
4
y
25
4y
24
+ ··· 5y 1
c
3
, c
8
y
25
+ 33y
24
+ ··· 3584y 1024
c
5
, c
6
, c
7
c
10
, c
11
y
25
+ 32y
24
+ ··· + 25y 1
c
9
y
25
32y
24
+ ··· + 25y 1
c
12
y
25
44y
24
+ ··· + 245499141y 3066001
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.459758 + 0.889622I
a = 0.076243 0.510379I
b = 0.96095 + 1.37863I
7.04309 + 7.69753I 0.69223 5.87020I
u = 0.459758 0.889622I
a = 0.076243 + 0.510379I
b = 0.96095 1.37863I
7.04309 7.69753I 0.69223 + 5.87020I
u = 0.233597 + 0.958426I
a = 0.400131 + 0.212647I
b = 0.719444 0.275653I
2.25524 2.86318I 0.67832 + 5.18628I
u = 0.233597 0.958426I
a = 0.400131 0.212647I
b = 0.719444 + 0.275653I
2.25524 + 2.86318I 0.67832 5.18628I
u = 0.480913 + 0.815098I
a = 0.540781 0.132936I
b = 1.59979 0.36621I
7.50954 + 0.03310I 1.50006 1.57887I
u = 0.480913 0.815098I
a = 0.540781 + 0.132936I
b = 1.59979 + 0.36621I
7.50954 0.03310I 1.50006 + 1.57887I
u = 0.277299 + 0.715967I
a = 0.206006 + 0.120919I
b = 0.106133 + 1.044080I
0.57147 2.01138I 1.23672 + 5.35998I
u = 0.277299 0.715967I
a = 0.206006 0.120919I
b = 0.106133 1.044080I
0.57147 + 2.01138I 1.23672 5.35998I
u = 0.085005 + 0.759627I
a = 1.31404 + 0.60640I
b = 0.296392 1.022520I
3.36592 + 0.96368I 4.01560 + 0.59686I
u = 0.085005 0.759627I
a = 1.31404 0.60640I
b = 0.296392 + 1.022520I
3.36592 0.96368I 4.01560 0.59686I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.683438 + 0.037064I
a = 0.47321 1.98307I
b = 0.484746 + 0.125338I
9.85760 + 3.86250I 4.92075 2.49747I
u = 0.683438 0.037064I
a = 0.47321 + 1.98307I
b = 0.484746 0.125338I
9.85760 3.86250I 4.92075 + 2.49747I
u = 0.454087 + 0.131996I
a = 0.930347 + 0.905066I
b = 0.170032 0.148405I
1.125730 0.539778I 7.59664 + 2.57696I
u = 0.454087 0.131996I
a = 0.930347 0.905066I
b = 0.170032 + 0.148405I
1.125730 + 0.539778I 7.59664 2.57696I
u = 0.05917 + 1.63615I
a = 0.26489 + 2.09173I
b = 0.28511 + 2.85242I
8.78516 3.17139I 0.87361 + 3.19607I
u = 0.05917 1.63615I
a = 0.26489 2.09173I
b = 0.28511 2.85242I
8.78516 + 3.17139I 0.87361 3.19607I
u = 0.12897 + 1.64332I
a = 1.43354 1.14853I
b = 1.74726 1.22919I
0.90994 + 2.33809I 0.195140 0.570968I
u = 0.12897 1.64332I
a = 1.43354 + 1.14853I
b = 1.74726 + 1.22919I
0.90994 2.33809I 0.195140 + 0.570968I
u = 0.01776 + 1.65047I
a = 0.47939 1.88937I
b = 1.43279 2.83187I
11.86300 + 1.31883I 3.44425 + 0.I
u = 0.01776 1.65047I
a = 0.47939 + 1.88937I
b = 1.43279 + 2.83187I
11.86300 1.31883I 3.44425 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.12689 + 1.67737I
a = 1.19016 + 2.59619I
b = 2.22016 + 3.74930I
1.85042 + 9.98114I 1.18698 4.78469I
u = 0.12689 1.67737I
a = 1.19016 2.59619I
b = 2.22016 3.74930I
1.85042 9.98114I 1.18698 + 4.78469I
u = 0.05535 + 1.70735I
a = 1.56322 0.66579I
b = 2.67420 0.95840I
11.72920 3.98033I 0. + 4.58718I
u = 0.05535 1.70735I
a = 1.56322 + 0.66579I
b = 2.67420 + 0.95840I
11.72920 + 3.98033I 0. 4.58718I
u = 0.193537
a = 2.78315
b = 0.768975
1.31003 10.0440
7
II.
I
u
2
= hu
2
+ b + u + 1, u
4
u
3
3u
2
+ a 2u 1, u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
a
2
=
u
4
+ u
3
+ 3u
2
+ 2u + 1
u
2
u 1
a
5
=
u
2
+ 1
u
2
a
3
=
u
4
+ u
3
+ 4u
2
+ 2u + 2
u 1
a
1
=
u
2
1
u
2
a
4
=
u
4
+ u
3
+ 4u
2
+ 2u + 2
u 1
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
+ 5u
3
+ 20u
2
+ 14u + 9
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
8
u
5
c
4
(u + 1)
5
c
5
, c
6
, c
7
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
9
, c
12
u
5
u
4
+ u
2
+ u 1
c
10
, c
11
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
8
y
5
c
5
, c
6
, c
7
c
10
, c
11
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
c
9
, c
12
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 0.758138 + 0.584034I
b = 0.036717 0.471689I
3.46474 2.21397I 4.37343 + 4.39306I
u = 0.233677 0.885557I
a = 0.758138 0.584034I
b = 0.036717 + 0.471689I
3.46474 + 2.21397I 4.37343 4.39306I
u = 0.416284
a = 0.645200
b = 0.757008
0.762751 6.42730
u = 0.05818 + 1.69128I
a = 0.935538 0.903908I
b = 1.91522 1.49448I
12.60320 3.33174I 5.84024 + 1.26157I
u = 0.05818 1.69128I
a = 0.935538 + 0.903908I
b = 1.91522 + 1.49448I
12.60320 + 3.33174I 5.84024 1.26157I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
25
+ 4u
24
+ ··· 5u + 1)
c
2
((u 1)
5
)(u
25
6u
24
+ ··· 5u + 1)
c
3
, c
8
u
5
(u
25
u
24
+ ··· + 32u + 32)
c
4
((u + 1)
5
)(u
25
6u
24
+ ··· 5u + 1)
c
5
, c
6
, c
7
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
25
+ 2u
24
+ ··· + 5u + 1)
c
9
(u
5
u
4
+ u
2
+ u 1)(u
25
+ 2u
24
+ ··· + 3u + 1)
c
10
, c
11
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)(u
25
+ 2u
24
+ ··· + 5u + 1)
c
12
(u
5
u
4
+ u
2
+ u 1)(u
25
8u
24
+ ··· + 14437u 1751)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
25
+ 40y
24
+ ··· 5y 1)
c
2
, c
4
((y 1)
5
)(y
25
4y
24
+ ··· 5y 1)
c
3
, c
8
y
5
(y
25
+ 33y
24
+ ··· 3584y 1024)
c
5
, c
6
, c
7
c
10
, c
11
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
25
+ 32y
24
+ ··· + 25y 1)
c
9
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)(y
25
32y
24
+ ··· + 25y 1)
c
12
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
· (y
25
44y
24
+ ··· + 245499141y 3066001)
13