12n
0254
(K12n
0254
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 11 9 12 3 6 1 8 6
Solving Sequence
3,8 9,12
7 6 1 11 5 2 4 10
c
8
c
7
c
6
c
12
c
11
c
5
c
2
c
4
c
10
c
1
, c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2.85386 × 10
22
u
20
1.50646 × 10
23
u
19
+ ··· + 1.12972 × 10
24
b + 1.18141 × 10
25
,
4.93819 × 10
24
u
20
2.24476 × 10
25
u
19
+ ··· + 2.48538 × 10
25
a + 6.80715 × 10
26
,
u
21
5u
20
+ ··· + 528u 64i
I
u
2
= h−271u
5
a
3
2553u
5
a
2
+ ··· + 3664a 2027, 2u
5
a
3
+ u
5
a
2
+ ··· 4a 2, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
3
= h−17u
10
+ 21u
9
+ 46u
8
+ 6u
7
188u
6
125u
5
+ 284u
4
+ 136u
3
+ 86u
2
+ 356b 512u + 71,
617u
10
+ 202u
9
+ ··· + 178a 1470, u
11
3u
9
+ 2u
7
+ 5u
6
+ u
5
4u
4
+ 6u
3
2u
2
+ u + 1i
I
v
1
= ha, b + 2v + 2, 4v
2
+ 6v + 1i
* 4 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h2.85×10
22
u
20
1.51×10
23
u
19
+· · ·+1.13×10
24
b+1.18×10
25
, 4.94×10
24
u
20
2.24 × 10
25
u
19
+ · · · + 2.49 × 10
25
a + 6.81 × 10
26
, u
21
5u
20
+ · · · + 528u 64i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
0.198690u
20
+ 0.903187u
19
+ ··· + 168.839u 27.3888
0.0252617u
20
+ 0.133349u
19
+ ··· + 44.8453u 10.4576
a
7
=
0.0389223u
20
+ 0.169523u
19
+ ··· + 22.6922u 1.25931
0.204843u
20
+ 0.945787u
19
+ ··· + 195.515u 36.3690
a
6
=
0.256774u
20
+ 1.17458u
19
+ ··· + 228.962u 39.2339
0.169105u
20
+ 0.785773u
19
+ ··· + 165.000u 30.9802
a
1
=
0.126591u
20
+ 0.558334u
19
+ ··· + 86.6544u 10.5130
0.416280u
20
1.91677u
19
+ ··· 391.813u + 72.1250
a
11
=
0.223951u
20
+ 1.03654u
19
+ ··· + 213.684u 37.8464
0.0252617u
20
+ 0.133349u
19
+ ··· + 44.8453u 10.4576
a
5
=
0.500539u
20
+ 2.28989u
19
+ ··· + 447.169u 77.8622
0.373948u
20
+ 1.73156u
19
+ ··· + 360.515u 67.3492
a
2
=
0.126591u
20
+ 0.558334u
19
+ ··· + 86.6544u 10.5130
0.373948u
20
1.73156u
19
+ ··· 360.515u + 67.3492
a
4
=
u
u
a
10
=
0.0720983u
20
0.344853u
19
+ ··· 82.1841u + 17.8758
0.441542u
20
2.05012u
19
+ ··· 436.659u + 82.5826
(ii) Obstruction class = 1
(iii) Cusp Shapes =
59011690898372144363232697
49707567109353239097754688
u
20
278177987921238114159260841
49707567109353239097754688
u
19
+
···
15717053070456132195264300185
12426891777338309774438672
u +
380289254330637407319519649
1553361472167288721804834
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
+ 11u
20
+ ··· + 2416u + 256
c
2
, c
4
u
21
3u
20
+ ··· 12u + 16
c
3
, c
8
u
21
+ 5u
20
+ ··· + 528u + 64
c
5
, c
7
, c
11
u
21
u
20
+ ··· 2u + 1
c
6
, c
9
, c
12
u
21
15u
19
+ ··· + 3u 1
c
10
u
21
19u
20
+ ··· + 96u 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
+ y
20
+ ··· 37120y 65536
c
2
, c
4
y
21
11y
20
+ ··· + 2416y 256
c
3
, c
8
y
21
9y
20
+ ··· + 54016y 4096
c
5
, c
7
, c
11
y
21
+ 13y
20
+ ··· + 46y
2
1
c
6
, c
9
, c
12
y
21
30y
20
+ ··· + 41y 1
c
10
y
21
11y
20
+ ··· + 115712y 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.121943 + 0.682474I
a = 0.563394 0.200224I
b = 0.242967 + 0.329112I
0.472540 0.941822I 7.59562 + 7.26185I
u = 0.121943 0.682474I
a = 0.563394 + 0.200224I
b = 0.242967 0.329112I
0.472540 + 0.941822I 7.59562 7.26185I
u = 0.603944
a = 0.453168
b = 0.799712
1.50093 5.01190
u = 0.536882 + 1.288830I
a = 0.332371 + 0.204687I
b = 0.203835 0.523003I
7.32268 + 3.73921I 2.18512 2.93436I
u = 0.536882 1.288830I
a = 0.332371 0.204687I
b = 0.203835 + 0.523003I
7.32268 3.73921I 2.18512 + 2.93436I
u = 0.45031 + 1.42697I
a = 0.401321 0.196262I
b = 0.169622 + 1.002850I
0.856656 + 0.283512I 6.72739 0.35031I
u = 0.45031 1.42697I
a = 0.401321 + 0.196262I
b = 0.169622 1.002850I
0.856656 0.283512I 6.72739 + 0.35031I
u = 1.39749 + 0.58008I
a = 0.000890 + 1.116300I
b = 0.416233 1.089790I
3.89482 + 3.14186I 8.38778 3.45220I
u = 1.39749 0.58008I
a = 0.000890 1.116300I
b = 0.416233 + 1.089790I
3.89482 3.14186I 8.38778 + 3.45220I
u = 0.452501
a = 2.15908
b = 0.287661
2.05646 0.974600
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.68409 + 1.39512I
a = 0.435024 + 0.190053I
b = 0.549126 1.238180I
2.93350 6.63406I 8.79219 + 4.92171I
u = 0.68409 1.39512I
a = 0.435024 0.190053I
b = 0.549126 + 1.238180I
2.93350 + 6.63406I 8.79219 4.92171I
u = 1.30096 + 0.91198I
a = 0.393242 + 1.276420I
b = 0.90620 1.50613I
0.8291 + 14.7385I 8.45146 7.52643I
u = 1.30096 0.91198I
a = 0.393242 1.276420I
b = 0.90620 + 1.50613I
0.8291 14.7385I 8.45146 + 7.52643I
u = 1.42639 + 0.82761I
a = 0.254534 1.154900I
b = 0.63940 + 1.47836I
2.34232 8.31871I 5.94131 + 4.58592I
u = 1.42639 0.82761I
a = 0.254534 + 1.154900I
b = 0.63940 1.47836I
2.34232 + 8.31871I 5.94131 4.58592I
u = 0.334496
a = 0.508543
b = 1.69359
10.4004 21.7570
u = 1.62920 + 0.48052I
a = 0.319293 1.001180I
b = 0.737374 + 0.986244I
5.91302 + 6.12351I 10.80009 6.57387I
u = 1.62920 0.48052I
a = 0.319293 + 1.001180I
b = 0.737374 0.986244I
5.91302 6.12351I 10.80009 + 6.57387I
u = 1.74543 + 0.04421I
a = 0.121882 + 0.958359I
b = 0.454067 1.159470I
6.80819 + 0.98118I 9.12937 0.92113I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.74543 0.04421I
a = 0.121882 0.958359I
b = 0.454067 + 1.159470I
6.80819 0.98118I 9.12937 + 0.92113I
7
II. I
u
2
= h−271u
5
a
3
2553u
5
a
2
+ · · · + 3664a 2027, 2u
5
a
3
+ u
5
a
2
+ · · ·
4a 2, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
a
0.110657a
3
u
5
+ 1.04247a
2
u
5
+ ··· 1.49612a + 0.827685
a
7
=
0.518579a
3
u
5
+ 0.461004a
2
u
5
+ ··· + 0.0661494a + 0.956309
1.96366a
3
u
5
0.801552a
2
u
5
+ ··· 1.76072a 1.99755
a
6
=
0.518579a
3
u
5
0.461004a
2
u
5
+ ··· 0.0661494a 0.956309
0.110657a
3
u
5
1.04247a
2
u
5
+ ··· + 1.49612a + 0.172315
a
1
=
u
2
1
u
2
a
11
=
0.110657a
3
u
5
+ 1.04247a
2
u
5
+ ··· 0.496121a + 0.827685
0.110657a
3
u
5
+ 1.04247a
2
u
5
+ ··· 1.49612a + 0.827685
a
5
=
u
4
+ u
2
1
u
4
a
2
=
u
2
1
u
4
a
4
=
u
u
a
10
=
1.32993a
3
u
5
+ 1.68150a
2
u
5
+ ··· 2.77909a + 0.292364
1.44059a
3
u
5
+ 0.639036a
2
u
5
+ ··· 2.28297a 0.535321
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
+ 4u 10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
4
c
2
, c
3
, c
4
c
8
(u
6
u
5
u
4
+ 2u
3
u + 1)
4
c
5
, c
7
, c
11
u
24
+ 3u
23
+ ··· + 418u + 319
c
6
, c
9
, c
12
u
24
3u
23
+ ··· 38u + 181
c
10
(u
2
+ u 1)
12
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
4
c
2
, c
3
, c
4
c
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
4
c
5
, c
7
, c
11
y
24
+ 11y
23
+ ··· + 621500y + 101761
c
6
, c
9
, c
12
y
24
13y
23
+ ··· 152760y + 32761
c
10
(y
2
3y + 1)
12
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.642556 0.992563I
b = 0.61676 + 1.29086I
5.83845 + 0.92430I 4.28328 0.79423I
u = 1.002190 + 0.295542I
a = 0.85932 1.36236I
b = 0.022966 + 0.740302I
2.05724 + 0.92430I 4.28328 0.79423I
u = 1.002190 + 0.295542I
a = 0.30955 + 1.60690I
b = 0.04999 1.65697I
5.83845 + 0.92430I 4.28328 0.79423I
u = 1.002190 + 0.295542I
a = 0.012501 0.246000I
b = 1.46084 + 0.21819I
2.05724 + 0.92430I 4.28328 0.79423I
u = 1.002190 0.295542I
a = 0.642556 + 0.992563I
b = 0.61676 1.29086I
5.83845 0.92430I 4.28328 + 0.79423I
u = 1.002190 0.295542I
a = 0.85932 + 1.36236I
b = 0.022966 0.740302I
2.05724 0.92430I 4.28328 + 0.79423I
u = 1.002190 0.295542I
a = 0.30955 1.60690I
b = 0.04999 + 1.65697I
5.83845 0.92430I 4.28328 + 0.79423I
u = 1.002190 0.295542I
a = 0.012501 + 0.246000I
b = 1.46084 0.21819I
2.05724 0.92430I 4.28328 + 0.79423I
u = 0.428243 + 0.664531I
a = 1.40914 + 1.08956I
b = 0.634044 0.520697I
5.83845 + 0.92430I 11.71672 0.79423I
u = 0.428243 + 0.664531I
a = 0.93092 1.84591I
b = 0.192218 1.006480I
2.05724 + 0.92430I 11.71672 0.79423I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428243 + 0.664531I
a = 2.36603 + 0.04486I
b = 0.032636 + 1.358240I
2.05724 + 0.92430I 11.71672 0.79423I
u = 0.428243 + 0.664531I
a = 2.34802 + 3.62566I
b = 1.051840 0.400227I
5.83845 + 0.92430I 11.71672 0.79423I
u = 0.428243 0.664531I
a = 1.40914 1.08956I
b = 0.634044 + 0.520697I
5.83845 0.92430I 11.71672 + 0.79423I
u = 0.428243 0.664531I
a = 0.93092 + 1.84591I
b = 0.192218 + 1.006480I
2.05724 0.92430I 11.71672 + 0.79423I
u = 0.428243 0.664531I
a = 2.36603 0.04486I
b = 0.032636 1.358240I
2.05724 0.92430I 11.71672 + 0.79423I
u = 0.428243 0.664531I
a = 2.34802 3.62566I
b = 1.051840 + 0.400227I
5.83845 0.92430I 11.71672 + 0.79423I
u = 1.073950 + 0.558752I
a = 0.461962 1.241720I
b = 0.48362 + 1.59891I
3.94784 5.69302I 8.00000 + 5.51057I
u = 1.073950 + 0.558752I
a = 0.327999 + 0.551063I
b = 1.003490 0.857180I
3.94784 5.69302I 8.00000 + 5.51057I
u = 1.073950 + 0.558752I
a = 0.370228 + 0.210083I
b = 1.67733 0.62104I
3.94784 5.69302I 8.00000 + 5.51057I
u = 1.073950 + 0.558752I
a = 0.01951 + 1.59808I
b = 0.316295 1.320830I
3.94784 5.69302I 8.00000 + 5.51057I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 0.461962 + 1.241720I
b = 0.48362 1.59891I
3.94784 + 5.69302I 8.00000 5.51057I
u = 1.073950 0.558752I
a = 0.327999 0.551063I
b = 1.003490 + 0.857180I
3.94784 + 5.69302I 8.00000 5.51057I
u = 1.073950 0.558752I
a = 0.370228 0.210083I
b = 1.67733 + 0.62104I
3.94784 + 5.69302I 8.00000 5.51057I
u = 1.073950 0.558752I
a = 0.01951 1.59808I
b = 0.316295 + 1.320830I
3.94784 + 5.69302I 8.00000 5.51057I
13
III. I
u
3
= h−17u
10
+ 21u
9
+ · · · + 356b + 71, 617u
10
+ 202u
9
+ · · · + 178a
1470, u
11
3u
9
+ · · · + u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
3.46629u
10
1.13483u
9
+ ··· 13.9270u + 8.25843
0.0477528u
10
0.0589888u
9
+ ··· + 1.43820u 0.199438
a
7
=
2.36798u
10
0.278090u
9
+ ··· 9.50562u + 8.34551
0.00842697u
10
+ 0.216292u
9
+ ··· + 0.893258u + 0.0646067
a
6
=
2.99719u
10
0.261236u
9
+ ··· 10.7022u + 8.68820
0.0758427u
10
+ 0.446629u
9
+ ··· + 1.53933u + 0.0814607
a
1
=
0.705056u
10
+ 0.429775u
9
+ ··· + 2.73596u 1.26124
0.0365169u
10
+ 0.103933u
9
+ ··· + 0.370787u + 0.446629
a
11
=
3.51404u
10
1.19382u
9
+ ··· 12.4888u + 8.05899
0.0477528u
10
0.0589888u
9
+ ··· + 1.43820u 0.199438
a
5
=
0.637640u
10
0.199438u
9
+ ··· 2.08989u + 1.27809
0.0674157u
10
+ 0.230337u
9
+ ··· + 0.646067u + 0.0168539
a
2
=
0.705056u
10
+ 0.429775u
9
+ ··· + 2.73596u 1.26124
0.0674157u
10
+ 0.230337u
9
+ ··· + 0.646067u + 0.0168539
a
4
=
u
u
a
10
=
4.17135u
10
1.56461u
9
+ ··· 16.6629u + 10.5197
0.0842697u
10
0.162921u
9
+ ··· + 1.06742u 0.646067
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1809
356
u
10
507
356
u
9
2437
178
u
8
+
665
178
u
7
+
410
89
u
6
+
8485
356
u
5
+
653
178
u
4
2875
178
u
3
+
3149
89
u
2
4741
178
u+
2863
356
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
6u
10
+ ··· 3u 1
c
2
u
11
+ 4u
10
+ 5u
9
2u
8
11u
7
8u
6
+ 4u
5
+ 8u
4
+ 2u
3
2u
2
u 1
c
3
u
11
3u
9
+ 2u
7
5u
6
+ u
5
+ 4u
4
+ 6u
3
+ 2u
2
+ u 1
c
4
u
11
4u
10
+ 5u
9
+ 2u
8
11u
7
+ 8u
6
+ 4u
5
8u
4
+ 2u
3
+ 2u
2
u + 1
c
5
, c
11
u
11
+ 3u
9
+ 3u
8
+ 3u
7
+ 6u
6
+ 3u
5
+ 2u
4
+ 2u
3
2u
2
3u 1
c
6
, c
12
u
11
3u
10
+ 2u
9
+ 2u
8
2u
7
+ 3u
6
6u
5
+ 3u
4
3u
3
+ 3u
2
+ 1
c
7
u
11
+ 3u
9
3u
8
+ 3u
7
6u
6
+ 3u
5
2u
4
+ 2u
3
+ 2u
2
3u + 1
c
8
u
11
3u
9
+ 2u
7
+ 5u
6
+ u
5
4u
4
+ 6u
3
2u
2
+ u + 1
c
9
u
11
+ 3u
10
+ 2u
9
2u
8
2u
7
3u
6
6u
5
3u
4
3u
3
3u
2
1
c
10
u
11
5u
10
+ ··· 3u 9
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ 2y
10
+ ··· + 25y 1
c
2
, c
4
y
11
6y
10
+ ··· 3y 1
c
3
, c
8
y
11
6y
10
+ ··· + 5y 1
c
5
, c
7
, c
11
y
11
+ 6y
10
+ ··· + 5y 1
c
6
, c
9
, c
12
y
11
5y
10
+ ··· 6y 1
c
10
y
11
5y
10
+ ··· + 369y 81
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.625397 + 0.494839I
a = 0.438748 1.244100I
b = 0.821829 + 0.139209I
3.46083 + 0.46362I 10.64211 + 0.77158I
u = 0.625397 0.494839I
a = 0.438748 + 1.244100I
b = 0.821829 0.139209I
3.46083 0.46362I 10.64211 0.77158I
u = 0.564447 + 1.125840I
a = 0.247928 + 0.345446I
b = 0.522992 0.276078I
7.82119 3.76164I 18.6525 + 4.0849I
u = 0.564447 1.125840I
a = 0.247928 0.345446I
b = 0.522992 + 0.276078I
7.82119 + 3.76164I 18.6525 4.0849I
u = 0.145041 + 0.670202I
a = 0.32779 + 2.44730I
b = 0.101556 + 1.234860I
2.75970 0.49193I 4.46246 4.43880I
u = 0.145041 0.670202I
a = 0.32779 2.44730I
b = 0.101556 1.234860I
2.75970 + 0.49193I 4.46246 + 4.43880I
u = 1.50834 + 0.06577I
a = 0.223191 + 1.141650I
b = 0.44883 1.38945I
7.91909 + 0.79075I 1.37905 0.86737I
u = 1.50834 0.06577I
a = 0.223191 1.141650I
b = 0.44883 + 1.38945I
7.91909 0.79075I 1.37905 + 0.86737I
u = 1.48572 + 0.56088I
a = 0.448099 0.943396I
b = 0.619533 + 1.131030I
6.75307 + 5.68255I 2.50294 2.90690I
u = 1.48572 0.56088I
a = 0.448099 + 0.943396I
b = 0.619533 1.131030I
6.75307 5.68255I 2.50294 + 2.90690I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.366747
a = 17.3054
b = 0.756037
5.71995 23.2780
18
IV. I
v
1
= ha, b + 2v + 2, 4v
2
+ 6v + 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
9
=
1
0
a
12
=
0
2v 2
a
7
=
1
2v 3
a
6
=
2v 2
2v 3
a
1
=
4v + 5
4v + 6
a
11
=
2v 2
2v 2
a
5
=
4v 5
4v 6
a
2
=
5v + 5
4v + 6
a
4
=
v
0
a
10
=
4v + 6
6v + 8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45
2
v
183
4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
8
u
2
c
4
(u + 1)
2
c
5
, c
7
, c
10
u
2
+ u 1
c
6
u
2
3u + 1
c
9
, c
12
u
2
+ 3u + 1
c
11
u
2
u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
8
y
2
c
5
, c
7
, c
10
c
11
y
2
3y + 1
c
6
, c
9
, c
12
y
2
7y + 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.30902
a = 0
b = 0.618034
2.63189 16.2970
v = 0.190983
a = 0
b = 1.61803
10.5276 41.4530
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
4
· (u
11
6u
10
+ ··· 3u 1)(u
21
+ 11u
20
+ ··· + 2416u + 256)
c
2
(u 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
4
· (u
11
+ 4u
10
+ 5u
9
2u
8
11u
7
8u
6
+ 4u
5
+ 8u
4
+ 2u
3
2u
2
u 1)
· (u
21
3u
20
+ ··· 12u + 16)
c
3
u
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
4
· (u
11
3u
9
+ 2u
7
5u
6
+ u
5
+ 4u
4
+ 6u
3
+ 2u
2
+ u 1)
· (u
21
+ 5u
20
+ ··· + 528u + 64)
c
4
(u + 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
4
· (u
11
4u
10
+ 5u
9
+ 2u
8
11u
7
+ 8u
6
+ 4u
5
8u
4
+ 2u
3
+ 2u
2
u + 1)
· (u
21
3u
20
+ ··· 12u + 16)
c
5
(u
2
+ u 1)
· (u
11
+ 3u
9
+ 3u
8
+ 3u
7
+ 6u
6
+ 3u
5
+ 2u
4
+ 2u
3
2u
2
3u 1)
· (u
21
u
20
+ ··· 2u + 1)(u
24
+ 3u
23
+ ··· + 418u + 319)
c
6
(u
2
3u + 1)
· (u
11
3u
10
+ 2u
9
+ 2u
8
2u
7
+ 3u
6
6u
5
+ 3u
4
3u
3
+ 3u
2
+ 1)
· (u
21
15u
19
+ ··· + 3u 1)(u
24
3u
23
+ ··· 38u + 181)
c
7
(u
2
+ u 1)
· (u
11
+ 3u
9
3u
8
+ 3u
7
6u
6
+ 3u
5
2u
4
+ 2u
3
+ 2u
2
3u + 1)
· (u
21
u
20
+ ··· 2u + 1)(u
24
+ 3u
23
+ ··· + 418u + 319)
c
8
u
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
4
· (u
11
3u
9
+ 2u
7
+ 5u
6
+ u
5
4u
4
+ 6u
3
2u
2
+ u + 1)
· (u
21
+ 5u
20
+ ··· + 528u + 64)
c
9
(u
2
+ 3u + 1)
· (u
11
+ 3u
10
+ 2u
9
2u
8
2u
7
3u
6
6u
5
3u
4
3u
3
3u
2
1)
· (u
21
15u
19
+ ··· + 3u 1)(u
24
3u
23
+ ··· 38u + 181)
c
10
((u
2
+ u 1)
13
)(u
11
5u
10
+ ··· 3u 9)(u
21
19u
20
+ ··· + 96u 64)
c
11
(u
2
u 1)
· (u
11
+ 3u
9
+ 3u
8
+ 3u
7
+ 6u
6
+ 3u
5
+ 2u
4
+ 2u
3
2u
2
3u 1)
· (u
21
u
20
+ ··· 2u + 1)(u
24
+ 3u
23
+ ··· + 418u + 319)
c
12
(u
2
+ 3u + 1)
· (u
11
3u
10
+ 2u
9
+ 2u
8
2u
7
+ 3u
6
6u
5
+ 3u
4
3u
3
+ 3u
2
+ 1)
· (u
21
15u
19
+ ··· + 3u 1)(u
24
3u
23
+ ··· 38u + 181)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
6
+ y
5
+ ··· + 3y + 1)
4
(y
11
+ 2y
10
+ ··· + 25y 1)
· (y
21
+ y
20
+ ··· 37120y 65536)
c
2
, c
4
(y 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
4
· (y
11
6y
10
+ ··· 3y 1)(y
21
11y
20
+ ··· + 2416y 256)
c
3
, c
8
y
2
(y
6
3y
5
+ ··· y + 1)
4
(y
11
6y
10
+ ··· + 5y 1)
· (y
21
9y
20
+ ··· + 54016y 4096)
c
5
, c
7
, c
11
(y
2
3y + 1)(y
11
+ 6y
10
+ ··· + 5y 1)(y
21
+ 13y
20
+ ··· + 46y
2
1)
· (y
24
+ 11y
23
+ ··· + 621500y + 101761)
c
6
, c
9
, c
12
(y
2
7y + 1)(y
11
5y
10
+ ··· 6y 1)(y
21
30y
20
+ ··· + 41y 1)
· (y
24
13y
23
+ ··· 152760y + 32761)
c
10
((y
2
3y + 1)
13
)(y
11
5y
10
+ ··· + 369y 81)
· (y
21
11y
20
+ ··· + 115712y 4096)
24