12n
0257
(K12n
0257
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 12 10 11 4 7 5 7 10
Solving Sequence
5,10 3,11
2 1 4 12 6 7 8 9
c
10
c
2
c
1
c
4
c
12
c
5
c
6
c
7
c
9
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.90485 × 10
17
u
17
2.51658 × 10
17
u
16
+ ··· + 3.03349 × 10
16
b 4.02818 × 10
17
,
2.08713 × 10
17
u
17
2.72839 × 10
17
u
16
+ ··· + 7.58374 × 10
15
a 3.96132 × 10
17
, u
18
u
17
+ ··· 4u + 1i
I
u
2
= h3u
11
u
10
+ u
9
9u
8
6u
7
3u
6
+ 4u
5
+ 18u
4
+ 12u
3
+ 7u
2
+ b 3u 3,
4u
11
+ 3u
10
2u
9
+ 13u
8
+ 2u
7
+ 2u
6
9u
5
20u
4
8u
3
u
2
+ a + 8u + 4,
u
12
3u
9
3u
8
u
7
+ 2u
6
+ 7u
5
+ 6u
4
+ 2u
3
2u
2
3u 1i
I
u
3
= hu
3
+ 3u
2
+ 18b 17u + 46, 5u
3
+ 3u
2
+ 36a 41u 32, u
4
u
3
+ 7u
2
+ 6u 4i
I
u
4
= h2b + u 1, a u 1, u
2
+ u 1i
I
u
5
= hb u 1, 2u
3
+ 3u
2
+ 66a + 19u 1, u
4
+ 4u
3
+ 7u
2
+ 6u + 11i
* 5 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.90 × 10
17
u
17
2.52 × 10
17
u
16
+ · · · + 3.03 × 10
16
b 4.03 × 10
17
, 2.09 ×
10
17
u
17
2.73×10
17
u
16
+· · ·+7.58×10
15
a3.96×10
17
, u
18
u
17
+· · ·4u+1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
3
=
27.5212u
17
+ 35.9768u
16
+ ··· 342.299u + 52.2344
6.27938u
17
+ 8.29598u
16
+ ··· 84.9277u + 13.2790
a
11
=
1
u
2
a
2
=
27.5212u
17
+ 35.9768u
16
+ ··· 342.299u + 52.2344
11.3536u
17
+ 14.8220u
16
+ ··· 146.271u + 21.7346
a
1
=
7.55482u
17
+ 8.52485u
16
+ ··· 73.2580u + 8.96058
1.14106u
17
+ 1.22922u
16
+ ··· 9.94123u + 0.881867
a
4
=
12.4658u
17
+ 7.03725u
16
+ ··· + 23.8108u 25.5769
1.03310u
17
+ 1.07235u
16
+ ··· 13.6155u + 0.722053
a
12
=
6.41376u
17
+ 7.29563u
16
+ ··· 63.3168u + 8.07871
1.14106u
17
+ 1.22922u
16
+ ··· 9.94123u + 0.881867
a
6
=
6.19684u
17
0.924141u
16
+ ··· 69.5089u + 28.5882
0.881867u
17
+ 0.259189u
16
+ ··· 17.5763u + 6.41376
a
7
=
7.07871u
17
0.664952u
16
+ ··· 87.0852u + 35.0020
0.881867u
17
+ 0.259189u
16
+ ··· 17.5763u + 6.41376
a
8
=
7.07871u
17
0.664952u
16
+ ··· 86.0852u + 35.0020
0.881867u
17
+ 0.259189u
16
+ ··· 17.5763u + 6.41376
a
9
=
22.1744u
17
27.4894u
16
+ ··· + 263.201u 35.7652
5.27270u
17
6.06640u
16
+ ··· + 53.3756u 6.19684
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2063530662655740221
30334945780497320
u
17
+
4790167344610047657
60669891560994640
u
16
+ ···
39519432929474093823
60669891560994640
u +
3918064914900190251
60669891560994640
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 9u
17
+ ··· 656u + 256
c
2
, c
4
u
18
3u
17
+ ··· + 52u 16
c
3
, c
8
u
18
5u
17
+ ··· + 80u + 64
c
5
, c
6
, c
9
u
18
+ 5u
16
+ ··· 5u 1
c
7
, c
10
, c
11
u
18
+ u
17
+ ··· + 4u + 1
c
12
u
18
+ 12u
17
+ ··· + 6u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 3y
17
+ ··· + 495872y + 65536
c
2
, c
4
y
18
9y
17
+ ··· + 656y + 256
c
3
, c
8
y
18
+ 9y
17
+ ··· 29440y + 4096
c
5
, c
6
, c
9
y
18
+ 10y
17
+ ··· 45y + 1
c
7
, c
10
, c
11
y
18
+ 31y
17
+ ··· + 6y + 1
c
12
y
18
50y
17
+ ··· 2700y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.584558 + 0.366182I
a = 0.031695 + 0.764128I
b = 0.238877 + 0.648680I
1.158820 0.715487I 6.82546 + 3.87567I
u = 0.584558 0.366182I
a = 0.031695 0.764128I
b = 0.238877 0.648680I
1.158820 + 0.715487I 6.82546 3.87567I
u = 1.51394 + 0.18364I
a = 0.619867 + 0.808006I
b = 0.40901 + 1.77160I
10.72160 + 4.05902I 5.48776 6.30227I
u = 1.51394 0.18364I
a = 0.619867 0.808006I
b = 0.40901 1.77160I
10.72160 4.05902I 5.48776 + 6.30227I
u = 0.022331 + 0.452997I
a = 1.61941 + 0.40552I
b = 0.156583 + 0.047051I
0.21869 2.12649I 2.57122 + 5.28808I
u = 0.022331 0.452997I
a = 1.61941 0.40552I
b = 0.156583 0.047051I
0.21869 + 2.12649I 2.57122 5.28808I
u = 0.025010 + 0.431550I
a = 1.34703 + 2.60646I
b = 0.250192 + 0.749320I
2.52651 6.83690I 1.00389 + 11.16505I
u = 0.025010 0.431550I
a = 1.34703 2.60646I
b = 0.250192 0.749320I
2.52651 + 6.83690I 1.00389 11.16505I
u = 0.007817 + 0.411255I
a = 0.85304 2.78085I
b = 0.325456 0.844226I
3.55439 + 1.25550I 1.98701 1.61045I
u = 0.007817 0.411255I
a = 0.85304 + 2.78085I
b = 0.325456 + 0.844226I
3.55439 1.25550I 1.98701 + 1.61045I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.75357
a = 0.620403
b = 1.40026
7.06782 18.1410
u = 0.204909
a = 4.38528
b = 0.536453
1.30691 9.62130
u = 1.10465 + 2.31020I
a = 0.029942 + 0.642788I
b = 0.31930 + 2.83217I
13.4615 12.9156I 0
u = 1.10465 2.31020I
a = 0.029942 0.642788I
b = 0.31930 2.83217I
13.4615 + 12.9156I 0
u = 0.50858 + 2.58223I
a = 0.535381 0.129487I
b = 0.444741 0.317296I
8.47225 5.66445I 0
u = 0.50858 2.58223I
a = 0.535381 + 0.129487I
b = 0.444741 + 0.317296I
8.47225 + 5.66445I 0
u = 0.19411 + 2.91147I
a = 0.215532 0.577704I
b = 0.82274 2.38447I
13.28390 + 2.28868I 0
u = 0.19411 2.91147I
a = 0.215532 + 0.577704I
b = 0.82274 + 2.38447I
13.28390 2.28868I 0
6
II.
I
u
2
= h3u
11
u
10
+· · ·+b3, 4u
11
+3u
10
+· · ·+a+4, u
12
3u
9
+· · ·3u1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
3
=
4u
11
3u
10
+ ··· 8u 4
3u
11
+ u
10
+ ··· + 3u + 3
a
11
=
1
u
2
a
2
=
4u
11
3u
10
+ ··· 8u 4
5u
11
+ 2u
10
+ ··· + 8u + 6
a
1
=
3u
11
+ u
10
+ 9u
8
+ 6u
7
7u
5
19u
4
11u
3
u
2
+ 8u + 6
u
2
1
a
4
=
6u
11
+ 4u
10
+ ··· + 14u + 8
7u
11
5u
10
+ ··· 21u 13
a
12
=
3u
11
+ u
10
+ 9u
8
+ 6u
7
7u
5
19u
4
11u
3
+ 8u + 7
u
2
1
a
6
=
7u
11
3u
10
+ ··· 14u 13
u
11
+ 3u
8
+ 3u
7
+ u
6
2u
5
7u
4
6u
3
2u
2
+ 2u + 3
a
7
=
6u
11
3u
10
+ u
9
18u
8
9u
7
+ 12u
5
+ 35u
4
+ 17u
3
+ u
2
12u 10
u
11
+ 3u
8
+ 3u
7
+ u
6
2u
5
7u
4
6u
3
2u
2
+ 2u + 3
a
8
=
6u
11
3u
10
+ u
9
18u
8
9u
7
+ 12u
5
+ 35u
4
+ 17u
3
+ u
2
13u 10
u
11
+ 3u
8
+ 3u
7
+ u
6
2u
5
7u
4
5u
3
2u
2
+ 2u + 3
a
9
=
10u
11
6u
10
+ ··· 21u 17
3u
11
+ u
10
+ 9u
8
+ 6u
7
7u
5
19u
4
11u
3
+ 8u + 7
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 12u
11
12u
10
+ 3u
9
41u
8
+ 15u
6
+ 38u
5
+ 73u
4
u
3
22u
2
57u 30
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
4u
11
+ ··· 13u + 1
c
2
u
12
+ 4u
11
+ ··· u + 1
c
3
u
12
+ 6u
10
+ 3u
9
+ 13u
8
+ 7u
7
+ 15u
6
+ 6u
5
+ 2u
3
2u
2
3u + 1
c
4
u
12
4u
11
+ ··· + u + 1
c
5
, c
9
u
12
3u
11
+ 2u
10
+ 2u
9
6u
8
+ 7u
7
2u
6
u
5
+ 3u
4
3u
3
1
c
6
u
12
+ 3u
11
+ 2u
10
2u
9
6u
8
7u
7
2u
6
+ u
5
+ 3u
4
+ 3u
3
1
c
7
, c
10
u
12
3u
9
3u
8
u
7
+ 2u
6
+ 7u
5
+ 6u
4
+ 2u
3
2u
2
3u 1
c
8
u
12
+ 6u
10
3u
9
+ 13u
8
7u
7
+ 15u
6
6u
5
2u
3
2u
2
+ 3u + 1
c
11
u
12
+ 3u
9
3u
8
+ u
7
+ 2u
6
7u
5
+ 6u
4
2u
3
2u
2
+ 3u 1
c
12
u
12
12u
11
+ ··· 12u + 9
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
+ 12y
11
+ ··· 81y + 1
c
2
, c
4
y
12
4y
11
+ ··· 13y + 1
c
3
, c
8
y
12
+ 12y
11
+ ··· 13y + 1
c
5
, c
6
, c
9
y
12
5y
11
+ 4y
10
+ 10y
9
27y
7
8y
6
+ 25y
5
+ 15y
4
5y
3
6y
2
+ 1
c
7
, c
10
, c
11
y
12
6y
10
5y
9
+ 15y
8
+ 25y
7
8y
6
27y
5
+ 10y
3
+ 4y
2
5y + 1
c
12
y
12
24y
11
+ ··· 234y + 81
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.366604 + 0.825368I
a = 1.11814 + 0.91713I
b = 0.413716 + 0.377477I
2.86185 + 6.14960I 3.55511 1.94828I
u = 0.366604 0.825368I
a = 1.11814 0.91713I
b = 0.413716 0.377477I
2.86185 6.14960I 3.55511 + 1.94828I
u = 0.851892
a = 0.391239
b = 2.26079
3.56755 13.7860
u = 0.111536 + 1.194340I
a = 0.317924 0.704003I
b = 0.993719 + 0.895794I
5.28057 0.69048I 8.92309 + 4.67234I
u = 0.111536 1.194340I
a = 0.317924 + 0.704003I
b = 0.993719 0.895794I
5.28057 + 0.69048I 8.92309 4.67234I
u = 0.765921
a = 1.24205
b = 9.03089
2.40622 53.6250
u = 0.496770 + 1.152800I
a = 0.554307 + 0.648652I
b = 0.388509 + 0.841432I
0.483582 + 0.496104I 0.592681 0.118839I
u = 0.496770 1.152800I
a = 0.554307 0.648652I
b = 0.388509 0.841432I
0.483582 0.496104I 0.592681 + 0.118839I
u = 0.629825 + 0.069225I
a = 1.33711 0.51168I
b = 0.874744 + 0.682079I
4.44304 + 1.79476I 4.83493 4.62713I
u = 0.629825 0.069225I
a = 1.33711 + 0.51168I
b = 0.874744 0.682079I
4.44304 1.79476I 4.83493 + 4.62713I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.42465 + 0.18625I
a = 0.644266 + 0.830701I
b = 0.46049 + 1.87154I
11.06570 + 3.92660I 15.1553 + 1.2084I
u = 1.42465 0.18625I
a = 0.644266 0.830701I
b = 0.46049 1.87154I
11.06570 3.92660I 15.1553 1.2084I
11
III. I
u
3
=
hu
3
+3u
2
+18b17u +46, 5u
3
+3u
2
+36a41u 32, u
4
u
3
+7u
2
+6u4i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
3
=
5
36
u
3
1
12
u
2
+
41
36
u +
8
9
1
18
u
3
1
6
u
2
+
17
18
u
23
9
a
11
=
1
u
2
a
2
=
5
36
u
3
1
12
u
2
+
41
36
u +
8
9
5
18
u
3
+
1
6
u
2
+
13
18
u
25
9
a
1
=
1
9
u
3
1
6
u
2
+
11
18
u +
11
18
1
18
u
3
1
6
u
2
1
18
u
14
9
a
4
=
1
9
u
3
1
6
u
2
+
11
18
u +
11
18
7
18
u
3
5
6
u
2
+
7
18
u
10
9
a
12
=
1
6
u
3
+
2
3
u +
13
6
1
18
u
3
1
6
u
2
1
18
u
14
9
a
6
=
5
12
u
3
1
4
u
2
+
29
12
u +
5
3
5
18
u
3
+
1
6
u
2
23
18
u
7
9
a
7
=
5
36
u
3
1
12
u
2
+
41
36
u +
8
9
5
18
u
3
+
1
6
u
2
23
18
u
7
9
a
8
=
1
12
u
3
1
4
u
2
+
1
12
u +
1
3
11
18
u
3
7
6
u
2
43
18
u +
1
9
a
9
=
1
9
u
3
+
1
6
u
2
11
18
u
11
18
1
6
u
3
+
1
2
u
2
+
5
6
u +
4
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ 3u + 1)
2
c
2
, c
4
, c
12
(u
2
u 1)
2
c
3
, c
8
(u
2
+ u 1)
2
c
5
, c
6
, c
9
u
4
+ 4u
3
+ 5u
2
8u 11
c
7
, c
10
, c
11
u
4
+ u
3
+ 7u
2
6u 4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
8
, c
12
(y
2
3y + 1)
2
c
5
, c
6
, c
9
y
4
6y
3
+ 67y
2
174y + 121
c
7
, c
10
, c
11
y
4
+ 13y
3
+ 53y
2
92y + 16
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.06243
a = 0.581719
b = 3.68046
2.96088 2.00000
u = 0.444394
a = 1.39074
b = 2.17364
2.96088 2.00000
u = 0.80902 + 2.79600I
a = 0.154508 + 0.533989I
b = 0.42705 + 2.79600I
12.8305 2.00000
u = 0.80902 2.79600I
a = 0.154508 0.533989I
b = 0.42705 2.79600I
12.8305 2.00000
15
IV. I
u
4
= h2b + u 1, a u 1, u
2
+ u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
3
=
u + 1
1
2
u +
1
2
a
11
=
1
u 1
a
2
=
u + 1
3
2
u +
1
2
a
1
=
0
u
a
4
=
u + 1
1
2
u +
1
2
a
12
=
u
u
a
6
=
2u 1
u + 1
a
7
=
u
u + 1
a
8
=
2u
3u + 2
a
9
=
2u
3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45
4
u +
45
4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
8
u
2
c
4
(u + 1)
2
c
5
, c
6
u
2
+ 3u + 1
c
7
u
2
u 1
c
9
u
2
3u + 1
c
10
, c
11
, c
12
u
2
+ u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
8
y
2
c
5
, c
6
, c
9
y
2
7y + 1
c
7
, c
10
, c
11
c
12
y
2
3y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0.190983
0.657974 4.29710
u = 1.61803
a = 0.618034
b = 1.30902
7.23771 29.4530
19
V. I
u
5
= hb u 1, 2u
3
+ 3u
2
+ 66a + 19u 1, u
4
+ 4u
3
+ 7u
2
+ 6u + 11i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
3
=
0.0303030u
3
0.0454545u
2
0.287879u + 0.0151515
u + 1
a
11
=
1
u
2
a
2
=
0.0303030u
3
0.0454545u
2
0.287879u + 0.0151515
1
6
u
3
u
2
+
1
3
u
5
6
a
1
=
0.121212u
3
0.318182u
2
0.348485u 0.560606
1
6
u
3
1
2
u
2
1
6
u
1
3
a
4
=
0.121212u
3
0.318182u
2
0.348485u 0.560606
1
6
u
3
+
3
2
u
2
+
7
6
u +
10
3
a
12
=
0.0454545u
3
+ 0.181818u
2
0.181818u 0.227273
1
6
u
3
1
2
u
2
1
6
u
1
3
a
6
=
0.227273u
3
+ 0.409091u
2
+ 0.590909u + 0.363636
1
6
u
3
+
1
3
u +
1
6
a
7
=
0.0606061u
3
+ 0.409091u
2
+ 0.924242u + 0.530303
1
6
u
3
+
1
3
u +
1
6
a
8
=
0.272727u
3
0.590909u
2
0.409091u 1.13636
1
6
u
3
+ 2u
2
4
3
u +
23
6
a
9
=
0.121212u
3
+ 0.318182u
2
+ 0.348485u + 0.560606
1
2
u
2
+
1
2
u
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ 3u + 1)
2
c
2
, c
4
, c
12
(u
2
u 1)
2
c
3
, c
8
(u
2
+ u 1)
2
c
5
, c
6
, c
9
u
4
u
3
+ 5u
2
+ 2u + 4
c
7
, c
10
, c
11
u
4
4u
3
+ 7u
2
6u + 11
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
8
, c
12
(y
2
3y + 1)
2
c
5
, c
6
, c
9
y
4
+ 9y
3
+ 37y
2
+ 36y + 16
c
7
, c
10
, c
11
y
4
2y
3
+ 23y
2
+ 118y + 121
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.118034 + 1.322880I
a = 0.041356 0.463500I
b = 1.11803 + 1.32288I
4.93480 2.00000
u = 0.118034 1.322880I
a = 0.041356 + 0.463500I
b = 1.11803 1.32288I
4.93480 2.00000
u = 2.11803 + 1.32288I
a = 0.549553 + 0.343238I
b = 1.11803 + 1.32288I
4.93480 2.00000
u = 2.11803 1.32288I
a = 0.549553 0.343238I
b = 1.11803 1.32288I
4.93480 2.00000
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
2
+ 3u + 1)
4
(u
12
4u
11
+ ··· 13u + 1)
· (u
18
+ 9u
17
+ ··· 656u + 256)
c
2
((u 1)
2
)(u
2
u 1)
4
(u
12
+ 4u
11
+ ··· u + 1)
· (u
18
3u
17
+ ··· + 52u 16)
c
3
u
2
(u
2
+ u 1)
4
· (u
12
+ 6u
10
+ 3u
9
+ 13u
8
+ 7u
7
+ 15u
6
+ 6u
5
+ 2u
3
2u
2
3u + 1)
· (u
18
5u
17
+ ··· + 80u + 64)
c
4
((u + 1)
2
)(u
2
u 1)
4
(u
12
4u
11
+ ··· + u + 1)
· (u
18
3u
17
+ ··· + 52u 16)
c
5
(u
2
+ 3u + 1)(u
4
u
3
+ 5u
2
+ 2u + 4)(u
4
+ 4u
3
+ 5u
2
8u 11)
· (u
12
3u
11
+ 2u
10
+ 2u
9
6u
8
+ 7u
7
2u
6
u
5
+ 3u
4
3u
3
1)
· (u
18
+ 5u
16
+ ··· 5u 1)
c
6
(u
2
+ 3u + 1)(u
4
u
3
+ 5u
2
+ 2u + 4)(u
4
+ 4u
3
+ 5u
2
8u 11)
· (u
12
+ 3u
11
+ 2u
10
2u
9
6u
8
7u
7
2u
6
+ u
5
+ 3u
4
+ 3u
3
1)
· (u
18
+ 5u
16
+ ··· 5u 1)
c
7
(u
2
u 1)(u
4
4u
3
+ 7u
2
6u + 11)(u
4
+ u
3
+ 7u
2
6u 4)
· (u
12
3u
9
3u
8
u
7
+ 2u
6
+ 7u
5
+ 6u
4
+ 2u
3
2u
2
3u 1)
· (u
18
+ u
17
+ ··· + 4u + 1)
c
8
u
2
(u
2
+ u 1)
4
· (u
12
+ 6u
10
3u
9
+ 13u
8
7u
7
+ 15u
6
6u
5
2u
3
2u
2
+ 3u + 1)
· (u
18
5u
17
+ ··· + 80u + 64)
c
9
(u
2
3u + 1)(u
4
u
3
+ 5u
2
+ 2u + 4)(u
4
+ 4u
3
+ 5u
2
8u 11)
· (u
12
3u
11
+ 2u
10
+ 2u
9
6u
8
+ 7u
7
2u
6
u
5
+ 3u
4
3u
3
1)
· (u
18
+ 5u
16
+ ··· 5u 1)
c
10
(u
2
+ u 1)(u
4
4u
3
+ 7u
2
6u + 11)(u
4
+ u
3
+ 7u
2
6u 4)
· (u
12
3u
9
3u
8
u
7
+ 2u
6
+ 7u
5
+ 6u
4
+ 2u
3
2u
2
3u 1)
· (u
18
+ u
17
+ ··· + 4u + 1)
c
11
(u
2
+ u 1)(u
4
4u
3
+ 7u
2
6u + 11)(u
4
+ u
3
+ 7u
2
6u 4)
· (u
12
+ 3u
9
3u
8
+ u
7
+ 2u
6
7u
5
+ 6u
4
2u
3
2u
2
+ 3u 1)
· (u
18
+ u
17
+ ··· + 4u + 1)
c
12
((u
2
u 1)
4
)(u
2
+ u 1)(u
12
12u
11
+ ··· 12u + 9)
· (u
18
+ 12u
17
+ ··· + 6u 4)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
2
7y + 1)
4
(y
12
+ 12y
11
+ ··· 81y + 1)
· (y
18
+ 3y
17
+ ··· + 495872y + 65536)
c
2
, c
4
((y 1)
2
)(y
2
3y + 1)
4
(y
12
4y
11
+ ··· 13y + 1)
· (y
18
9y
17
+ ··· + 656y + 256)
c
3
, c
8
y
2
(y
2
3y + 1)
4
(y
12
+ 12y
11
+ ··· 13y + 1)
· (y
18
+ 9y
17
+ ··· 29440y + 4096)
c
5
, c
6
, c
9
(y
2
7y + 1)(y
4
6y
3
+ 67y
2
174y + 121)
· (y
4
+ 9y
3
+ 37y
2
+ 36y + 16)
· (y
12
5y
11
+ 4y
10
+ 10y
9
27y
7
8y
6
+ 25y
5
+ 15y
4
5y
3
6y
2
+ 1)
· (y
18
+ 10y
17
+ ··· 45y + 1)
c
7
, c
10
, c
11
(y
2
3y + 1)(y
4
2y
3
+ 23y
2
+ 118y + 121)
· (y
4
+ 13y
3
+ 53y
2
92y + 16)
· (y
12
6y
10
5y
9
+ 15y
8
+ 25y
7
8y
6
27y
5
+ 10y
3
+ 4y
2
5y + 1)
· (y
18
+ 31y
17
+ ··· + 6y + 1)
c
12
((y
2
3y + 1)
5
)(y
12
24y
11
+ ··· 234y + 81)
· (y
18
50y
17
+ ··· 2700y + 16)
25