12n
0258
(K12n
0258
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 1 10 12 4 7 1 5 7
Solving Sequence
3,5
2 1
6,10
7 11 4 9 12 8
c
2
c
1
c
5
c
6
c
10
c
4
c
9
c
12
c
7
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h102949u
15
+ 169425u
14
+ ··· + 344734b 488230,
475025u
15
+ 757448u
14
+ ··· + 689468a 2984519, u
16
+ 2u
15
+ ··· 15u 4i
I
u
2
= hu
5
a + 2u
4
a + u
5
+ 4u
4
2u
2
a + 3u
3
2au 2u
2
+ 3b 2a 3u 1, 4u
4
2u
2
a u
3
+ a
2
7u
2
+ 2a + 5,
u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
3
= hau + b + u + 1, a
2
+ au + 3, u
2
+ u 1i
I
u
4
= h2b + 1, a 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.03 × 10
5
u
15
+ 1 .69 × 10
5
u
14
+ · · · + 3.45 × 10
5
b 4.88 × 10
5
, 4.75 ×
10
5
u
15
+7.57×10
5
u
14
+· · ·+6.89×10
5
a2.98×10
6
, u
16
+2u
15
+· · ·15u4i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
6
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
10
=
0.688973u
15
1.09860u
14
+ ··· + 10.8060u + 4.32873
0.298633u
15
0.491466u
14
+ ··· + 4.30076u + 1.41625
a
7
=
0.527611u
15
+ 0.764711u
14
+ ··· 7.10340u 2.57154
0.0757251u
15
+ 0.157434u
14
+ ··· 0.695406u 0.399317
a
11
=
0.396324u
15
0.532866u
14
+ ··· + 5.76866u + 2.60958
0.296495u
15
0.408933u
14
+ ··· + 4.60606u + 1.80754
a
4
=
u
u
3
+ u
a
9
=
1.08530u
15
1.63146u
14
+ ··· + 16.5746u + 5.93830
0.447127u
15
0.705112u
14
+ ··· + 6.59538u + 2.18466
a
12
=
0.396324u
15
0.532866u
14
+ ··· + 5.76866u + 2.60958
0.148494u
15
0.213646u
14
+ ··· + 2.29462u + 0.768413
a
8
=
0.896155u
15
+ 1.26037u
14
+ ··· 12.0524u 4.14979
0.122193u
15
+ 0.231518u
14
+ ··· 1.42447u 0.424931
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2007761
689468
u
15
+
2194435
689468
u
14
+ ···
28351265
689468
u
1282717
172367
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 10u
15
+ ··· + 65u + 16
c
2
, c
4
u
16
2u
15
+ ··· + 15u 4
c
3
, c
8
u
16
3u
15
+ ··· + 6u + 8
c
5
u
16
3u
15
+ ··· + 52u + 64
c
6
, c
7
, c
9
c
11
, c
12
u
16
u
15
+ ··· u 1
c
10
u
16
12u
15
+ ··· 50u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
6y
15
+ ··· + 1343y + 256
c
2
, c
4
y
16
10y
15
+ ··· 65y + 16
c
3
, c
8
y
16
+ 3y
15
+ ··· 52y + 64
c
5
y
16
+ 67y
15
+ ··· 140304y + 4096
c
6
, c
7
, c
9
c
11
, c
12
y
16
+ 31y
15
+ ··· 9y + 1
c
10
y
16
36y
15
+ ··· 2908y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.891782
a = 0.236674
b = 0.553091
1.30085 8.84520
u = 1.091810 + 0.330825I
a = 0.147665 + 0.051010I
b = 0.210193 0.600885I
3.22144 1.13355I 4.59977 + 1.25337I
u = 1.091810 0.330825I
a = 0.147665 0.051010I
b = 0.210193 + 0.600885I
3.22144 + 1.13355I 4.59977 1.25337I
u = 1.094020 + 0.526074I
a = 1.054950 0.663309I
b = 0.141861 0.569038I
1.87639 + 6.13504I 0.06427 7.98576I
u = 1.094020 0.526074I
a = 1.054950 + 0.663309I
b = 0.141861 + 0.569038I
1.87639 6.13504I 0.06427 + 7.98576I
u = 0.029850 + 1.272860I
a = 4.37033 0.53285I
b = 3.61404 0.37068I
19.7225 4.8173I 2.30205 + 1.82839I
u = 0.029850 1.272860I
a = 4.37033 + 0.53285I
b = 3.61404 + 0.37068I
19.7225 + 4.8173I 2.30205 1.82839I
u = 1.31580
a = 0.254567
b = 1.49207
0.940295 7.17020
u = 0.296508 + 0.600916I
a = 0.432297 1.059770I
b = 0.140186 0.553162I
0.34157 1.65330I 2.57923 + 4.74775I
u = 0.296508 0.600916I
a = 0.432297 + 1.059770I
b = 0.140186 + 0.553162I
0.34157 + 1.65330I 2.57923 4.74775I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.537130 + 0.286418I
a = 0.60885 + 1.51474I
b = 0.016541 + 0.547073I
0.96164 + 1.16578I 5.62628 5.26913I
u = 0.537130 0.286418I
a = 0.60885 1.51474I
b = 0.016541 0.547073I
0.96164 1.16578I 5.62628 + 5.26913I
u = 1.42350 + 0.64934I
a = 1.89897 + 2.53374I
b = 3.64218 + 0.84571I
15.4087 + 11.5569I 4.10768 4.68861I
u = 1.42350 0.64934I
a = 1.89897 2.53374I
b = 3.64218 0.84571I
15.4087 11.5569I 4.10768 + 4.68861I
u = 1.50121 + 0.66208I
a = 1.43051 3.06754I
b = 3.39461 1.98308I
15.0197 2.0565I 4.37753 + 0.79044I
u = 1.50121 0.66208I
a = 1.43051 + 3.06754I
b = 3.39461 + 1.98308I
15.0197 + 2.0565I 4.37753 0.79044I
6
II. I
u
2
= hu
5
a + u
5
+ · · · 2a 1, 4u
4
2u
2
a u
3
+ a
2
7u
2
+ 2a + 5, u
6
+
u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
6
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
10
=
a
1
3
u
5
a
1
3
u
5
+ ··· +
2
3
a +
1
3
a
7
=
1
3
u
5
a +
4
3
u
5
+ ··· +
1
3
a +
5
3
1
3
u
5
a +
2
3
u
5
+ ··· +
2
3
a +
1
3
a
11
=
1
3
u
4
a +
1
3
u
5
+ ··· +
2
3
a + 1
2
3
u
5
a
2
3
u
4
a + ··· +
2
3
a +
2
3
a
4
=
u
u
3
+ u
a
9
=
1
3
u
4
a
1
3
u
5
+ ··· +
1
3
a
2
3
u
1
3
u
4
a
2
3
u
5
+ ···
1
3
a
1
3
u
a
12
=
1
3
u
4
a +
1
3
u
5
+ ··· +
2
3
a + 1
1
3
u
5
a +
1
3
u
5
+ ··· + a +
1
3
a
8
=
1
3
u
5
a +
1
3
u
5
+ ··· +
1
3
a +
2
3
2
3
u
5
a +
2
3
u
4
a + ··· +
1
3
a +
1
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
2
4u 4
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
3
, c
8
u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1
c
4
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
6
, c
7
, c
9
c
11
, c
12
(u
2
+ 1)
6
c
10
u
12
12u
11
+ ··· 60u + 9
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
2
, c
4
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
3
, c
8
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
c
6
, c
7
, c
9
c
11
, c
12
(y + 1)
12
c
10
y
12
14y
11
+ ··· 108y + 81
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.387926 + 1.194620I
b = 1.74846 0.37806I
5.18047 0.92430I 9.71672 + 0.79423I
u = 1.002190 + 0.295542I
a = 0.553835 0.009862I
b = 0.37806 1.74846I
5.18047 0.92430I 9.71672 + 0.79423I
u = 1.002190 0.295542I
a = 0.387926 1.194620I
b = 1.74846 + 0.37806I
5.18047 + 0.92430I 9.71672 0.79423I
u = 1.002190 0.295542I
a = 0.553835 + 0.009862I
b = 0.37806 + 1.74846I
5.18047 + 0.92430I 9.71672 0.79423I
u = 0.428243 + 0.664531I
a = 2.09808 + 1.60703I
b = 1.188690 + 0.647273I
1.39926 0.92430I 2.28328 + 0.79423I
u = 0.428243 + 0.664531I
a = 0.41834 2.74535I
b = 0.647273 1.188690I
1.39926 0.92430I 2.28328 + 0.79423I
u = 0.428243 0.664531I
a = 2.09808 1.60703I
b = 1.188690 0.647273I
1.39926 + 0.92430I 2.28328 0.79423I
u = 0.428243 0.664531I
a = 0.41834 + 2.74535I
b = 0.647273 + 1.188690I
1.39926 + 0.92430I 2.28328 0.79423I
u = 1.073950 + 0.558752I
a = 1.42256 0.62619I
b = 1.114040 + 0.351534I
3.28987 + 5.69302I 6.00000 5.51057I
u = 1.073950 + 0.558752I
a = 1.74023 1.77409I
b = 0.351534 1.114040I
3.28987 + 5.69302I 6.00000 5.51057I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 1.42256 + 0.62619I
b = 1.114040 0.351534I
3.28987 5.69302I 6.00000 + 5.51057I
u = 1.073950 0.558752I
a = 1.74023 + 1.77409I
b = 0.351534 + 1.114040I
3.28987 5.69302I 6.00000 + 5.51057I
11
III. I
u
3
= hau + b + u + 1, a
2
+ au + 3, u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u 1
a
1
=
u
u 1
a
6
=
2u 1
4u 2
a
10
=
a
au u 1
a
7
=
u 1
a + 1
a
11
=
a + u
au 2
a
4
=
u
u + 1
a
9
=
u
u
a
12
=
a + u
a 2u 1
a
8
=
2u 1
3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
+ 3u + 1)
2
c
2
, c
4
(u
2
u 1)
2
c
3
, c
8
(u
2
+ u 1)
2
c
6
, c
7
, c
9
c
11
, c
12
u
4
+ 3u
3
+ 10u
2
+ 6u + 9
c
10
(u + 1)
4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
8
(y
2
3y + 1)
2
c
6
, c
7
, c
9
c
11
, c
12
y
4
+ 11y
3
+ 82y
2
+ 144y + 81
c
10
(y 1)
4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.30902 + 1.70426I
b = 1.42705 1.05329I
4.27683 6.00000
u = 0.618034
a = 0.30902 1.70426I
b = 1.42705 + 1.05329I
4.27683 6.00000
u = 1.61803
a = 0.80902 + 1.53150I
b = 1.92705 + 2.47802I
12.1725 6.00000
u = 1.61803
a = 0.80902 1.53150I
b = 1.92705 2.47802I
12.1725 6.00000
15
IV. I
u
4
= h2b + 1, a 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
1
a
2
=
1
1
a
1
=
0
1
a
6
=
0
1
a
10
=
1
0.5
a
7
=
1
0.5
a
11
=
1
0.5
a
4
=
1
0
a
9
=
2
0
a
12
=
1
0.5
a
8
=
2
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.25
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
9
c
11
, c
12
u 1
c
3
, c
5
, c
8
u
c
4
, c
6
, c
7
c
10
u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y 1
c
3
, c
5
, c
8
y
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.500000
0 2.25000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
2
+ 3u + 1)
2
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
16
+ 10u
15
+ ··· + 65u + 16)
c
2
(u 1)(u
2
u 1)
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
· (u
16
2u
15
+ ··· + 15u 4)
c
3
, c
8
u(u
2
+ u 1)
2
(u
12
+ 3u
10
+ 5u
8
+ 4u
6
+ 2u
4
+ u
2
+ 1)
· (u
16
3u
15
+ ··· + 6u + 8)
c
4
(u + 1)(u
2
u 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
· (u
16
2u
15
+ ··· + 15u 4)
c
5
u(u
2
+ 3u + 1)
2
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
16
3u
15
+ ··· + 52u + 64)
c
6
, c
7
(u + 1)(u
2
+ 1)
6
(u
4
+ 3u
3
+ ··· + 6u + 9)(u
16
u
15
+ ··· u 1)
c
9
, c
11
, c
12
(u 1)(u
2
+ 1)
6
(u
4
+ 3u
3
+ ··· + 6u + 9)(u
16
u
15
+ ··· u 1)
c
10
((u + 1)
5
)(u
12
12u
11
+ ··· 60u + 9)(u
16
12u
15
+ ··· 50u + 4)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
2
7y + 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
16
6y
15
+ ··· + 1343y + 256)
c
2
, c
4
(y 1)(y
2
3y + 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
16
10y
15
+ ··· 65y + 16)
c
3
, c
8
y(y
2
3y + 1)
2
(y
6
+ 3y
5
+ 5y
4
+ 4y
3
+ 2y
2
+ y + 1)
2
· (y
16
+ 3y
15
+ ··· 52y + 64)
c
5
y(y
2
7y + 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
16
+ 67y
15
+ ··· 140304y + 4096)
c
6
, c
7
, c
9
c
11
, c
12
(y 1)(y + 1)
12
(y
4
+ 11y
3
+ 82y
2
+ 144y + 81)
· (y
16
+ 31y
15
+ ··· 9y + 1)
c
10
((y 1)
5
)(y
12
14y
11
+ ··· 108y + 81)
· (y
16
36y
15
+ ··· 2908y + 16)
21